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PART I

1. Introduction.—The first part of this paper, written by LovE, contains a theoretical
solution of the problem of rational hydrodynamics which has been named by writers
on ballistics, “ LAGrANGE’S problem ™ ; the second part, written by Pmopuck, gives
the application to ballistics.
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ON LAGRANGES BALLISTIC PROBLEM. 169

In the problem* it is supposed that a given mass of gas, which is initially in a uniform
state, is contained in a segment of a tube of uniform section. At one end the segment
of the tube is bounded by a fixed transverse section, and at the other end the tube is
closed by a piston of given mass, which is initially at rest and is free to move along the
tube without resistance. It is required to find the subsequent states of the gas and
the motion of the piston.

Under the pressure exerted by the gas the piston begins to move, and wave-motion
of finite amplitude is set up in the gas. The waves are plane. The theory of plane
waves of expansion of finite amplitude has been the subject of much study,t chiefly
in connection with the question of the initiation and maintenance of surfaces of
discontinuity. The difficulties associated with this question do not arise in Lagrange’s
problem, because the waves that are generated are always waves of ra,refaction, and
there is no tendency to discontinuity in waves of this type. Among the results that
have been obtained in the theory of plane waves of finite amplitude, two are specially
important for our present purpose. The first of these is that there exist waves of the
type known as ““ progressive waves,” and that they are the only ones that can advance
without discontinuity into gas at rest. They are sometimes described as “ motions
compatible with rest.”; The second important result is that the equations governing
the propagation of waves which are not compatible with rest can be integrated.§ Such
waves will be described in the sequel as ““ compound waves.”

The most important writings in which LAGrANGE’S problem is dealt with are the
memoir of Huaontor cited above, H. HapamarD’s © Legons sur la Propagation des
Ondes,” Paris, 1903, and a memoir by F. Gossor and R. L1ouvIiLLE in ‘ Mémorial des
Poudres et Salpétres,” vol. 17, 1914, p. 1.

The problem is not rendered essentially more difficult if it.is supposed that the
segment of the tube occupied by gas is bounded by two movable pistons of given
masses. Provision can be made for the case of a fixed end by taking the masses of
the two pistons to be equal, for then there is never any velocity at the section midway
between them. ‘

The tube will be thought of as running from left to right. When the pistons begin
to move progressive waves set out, one from the left-hand piston with a front proceeding
towards the right, the other from the right-hand piston with a front proceeding towards
the left. These waves meet at the middle section, and from that section there then
sets out a compound wave, which has an advancing front, proceeding towards the right,
and a receding front proceeding towards the left. This wave will be described as the

# 8. D. Poisson, “ Formules relatives au Mouvement du Boulet . . . extraites des Manuscrits de
Lagrange,” Paris, ‘J. Ec. Pol.,, cah. 21 (1832).
T Reference may be made to Lams’s ¢ Hydrodynamics,” ch. 10.
i H. Hucontor, Paris, ¢ J. ¥e. Pol.,” cah. 57 (1887) and cah. 58 (1889).
§ B. Riemany, °Géttingen Abh., vol. 8 (1859-60); also ‘Ges. math. Werke,” Leipzig, 1876,
p. 145.
2 B 2
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170 - MESSRS. A. E. H. LOVE AND F. B. PIDDUCK

- first middle wave.” When the advancing and receding fronts of the first middle
wave reach the pistons the original progressive waves are obliterated, reflexions take
place at the pistons, and new compound waves are generated at the pistons and encroach
upon the first middle wave. These waves will be described as the “ first reflected
wave from the left ” (or “ from the right ”’ as the case may be). The reflected waves
meet at or near the middle section, from which there then sets out a new compound
wave called the ““ second middle wave.”” This wave again has two fronts, one advancing
and encroaching upon the first reflected wave from the right, and the other receding
and encroaching upon the first reflected wave from the left. The two fronts eventually
reach the pistons, and then the second middle wave will have obliterated the first
reflected waves, and will itself be reflected so as to give rise to new compound waves
setting out from the pistons. These will be called the “ second reflected wave from
the left ”” (or ““ from the right ” as the case may be). The motion goes on in this way
until a piston reaches an end of the tube if the tube is of finite length.

In what follows Articles 2-9 are devoted to giving such an account of the theory
of plane waves of finite amplitude as seems to be necessary for the discussion of the
problem. Although so much has been written about the subject, it appears to be
impossible to find what is wanted in a suitable form. Articles 10, 11 contain the formulze
relating to the two progressive waves. These are already known from the work of
Gossor and LiouviLLe, but it seemed to be desirable, for the sake of completeness,
to obtain them anew. Articles 12-17 deal with the first middle wave. Sufficient
indications of the method of determining this wave have been given by the same writers
for the case of equal pistons. The really formidable difficulties of the problem begin
to present themselves when an attempt is made to discuss the waves reflected from
the moving pistons. In Articles 18-25 an approximate method of solution is found.
It seems to be capable of giving results for the first reflected waves correct to any desired
order of accuracy. In Articles 26-31 the second middle wave is determined. However
far the approximation to the first reflected waves is carried, the second middle wave
answering to them can be found by the method here given. Articles 32-40 are devoted
to the determination of the second reflected waves. The method used for the first
reflected waves does not give a sufficiently close approximation, and a new method is
applied. Numerical calculation of a particular example showed that all information
that can be of practical importance may be obtained from a solution which does not
go beyond the determination of these waves. The results of this calculation belong
properly to the second part of the paper. '

TarEORY OF PraNkE Waves oF FINITE AMPLITUDE.

2. General Equations.—The motion is supposed to take place in an unlimited straight
tube of uniform cross-section w. Let # be a co-ordinate measured along the tube,
and specifying the position at time ¢ of a plane of particles, which, when ¢ = 0, is in
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ON- LAGRANGE’S BALLISTIC PROBLEM. 171

the position specified by z,. At the time ¢ = 0 the gas is supposed to be at rest. Let
P, and p, denote the undisturbed pressure and density, supposed uniform, and let p,
p» # denote the pressure, density and velocity at time ¢ for the particles specified by «,.
The equation of continuity is

oxr _
P é;(; = Pos
and the equation of motion is
Pmox _ _ Op,
Poe ox,  ~ om,

On introducing «, which is ox/o¢, these equations become

du

o,

o Op Qﬂ_ 1 8})

|b
L\,

oot ot o 0Ty

It is supposed that p is a uniform function of p, and it is convenient to introduce,
alter RIEMANN, a quantity - by the defining equation

()

and the condition that o = 0 when p = 0. Then the equations become

aa' au Bu 80'
9 - v 97—
o P =0 g =0

where IT is a function of p defined by the equation

=2 /()

The quantity II, which is of the dimensions of a velocity, may be regarded as a known
function of #. The value of I when p = p, is the velocity of sound waves of small
amplitude in the undisturbed state of the gas. This will be denoted by a. The equations
are of Lagrangian type, and z, and ¢ are the independent variables. The quantities
p and p, like II, can be regarded as known functlons of . The value of & when p = p,
will be denoted by o, '

3. Progressive Waves.—Two quantltles r and s may be introduced, after RiEMANN,

by the equations
o+u = 2, o—u = 28,
or
o =1r+s, U =r—=;.

The equations of continuity and motion then give the two equations

or or _
— = = Il —~=0.
En +1 ox, 0, !
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172 MESSRS. A. E. H. LOVE AND F. B. PIDDUCK

If s is constant, the second of these equations becomes an identity, and the first can

be integrated in the form
r = F (a,—11t),

where F denotes an arbitrary function. This can be proved easily, and the equation
can be written
xO—Ht - f(O').

In like manner, when 7 is constant, the first of the two equations becomes an identity,
and the second can be integrated in the form

xy+ 11t = f (o).

4

A motion with constant » or constant s is described as a “‘ progressive wave.” A
wave with constant s is propagated in the direction of increase of x, with velocity II,
which depends upon the constant value of s and the local value of #. This is the velocity
relative to the medium, not the velocity relative to the tube. Similar statements hold
for a wave of constant 7. ‘

4. Motion of a Junction.—When a wave is transmitted into gas at rest, or into a
region where there is some other state of motion, there may be discontinuity in the
values of the pressure, &c., in the two regions separated by the front of the wave. We
consider here the case where there is no such discontinuity, but, while the pressure,
&ec., have the same values on the two sides of any plane # = const., the laws of variation
of these quantities on the two sides of a wave-front are different. We describe such
a moving wave-front as a “ junction.” Our immediate object is to determine the
velocity of a junction relative to the medium. We shall attain this object by supposing
that there are very slight differences between the values of any of the quantities on
the two sides of the wave-front.

Let w denote the velocity of the junction relative to the medium. In a very short
time J¢ a mass equal to pww & has its motion and state changed from those specified
by wu, p, p, to those specified by w + Au, p + Ap, p + Ap. The increment of
momentum must be equal to the impulse of the difference of pressure, and therefore

we have the equation
powtt 8t A = w Ap Jt.

Further, the work done during the interval J¢ by the external pressures on the ends
of this element of mass must be equal to the sum of the increments of the kinetic and
intrinsic energies of the element. Now the changes of state being adiabatic and very
slight, the increment of the intrinsic energy per unit of mass may be put equal to

—pA (1/p),
and therefore we have the equation

o (p+Ap) (u+ Au) St —wpu dt = Lpjww 5t {(u+ Au) —u®} —pww dtp A (1/p).
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ON LAGRANGES BALLISTIC PROBLEM. 173

The two equations containing Ap and Au give

Ap = pyw Au
and
P Au+u Ap = powu Au+paw (pfp?) Ap.

The terms uAp and pwuAu in the second of these equations cancel, and then, by
eliminating Au between the two equations, we find

Since there is no actual discontinuity and p is a uniform function of p, we may replace
Ap|Ap by dpldp, and thus obtain the equation °

s £ dp
| O
which shows that the velocity of the junction relative to the medium is that which
was previously denoted by II.

If motion is set up in one part of the gas, and advances into previously undisturbed
gas, the value of p at the junction is p,, and therefore the velocity of the front of the
wave, relative to the medium or to the tube, is that which has been denoted by a.

5. Nature of the Motion in a Compound Wave.—Important results can be obtained by
regarding , and ¢ as functions of 7 and s. On interchanging the dependent and inde-
pendent variables in the equations

or or _ 95 08 _

e =0 s Ug =%
we obtain the equations

9y _pp Ot _ 9y, p O _

0s 1183_—0’ or +Ha¢”0'

Now the differentials of z, and ¢ are always connected with those of » and s by the

formule
2, o
s ds, dt = o dr+

o

P ds.

dx, = 92, dr+
or
Hence the places in the medium, and the times, at which any particular value of r is
found, vary according to the formulee

ot

ot Cdx
ot ds = %%
0s

0y 5. _a
dwo—asds_ﬂ ds, dt—-ass T
and thus it appears that any value of r is transmitted through the medium, in the
direction of increase of x, with the velocity II. In like manner it can be shown that

any value of s is transmitted in the opposite direction with the same local velocity.
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We have seen that the velocity of a junction relative to the medium is the value of
IT at the junction, and it follows that the value of r remains constant along a junction
which travels in the direction of increase of #. If the junction travels in the opposite
direction, the value of s at the junction remains constant.

The motion consequent upon any initial conditions consists in the transfer of the
existing values of 7 and s through the medium with the variable velocity already described.
New values of » and s can be generated at boundaries and transferred through the
medium.

6. General Analysis of Compound Waves—When the dependent and independent

~variables are interchanged in the equations
aa ou ou

T =0 ) i

o T =0 g =0

there result the equations

dwy 1y O oy
TRl =0,  SO4IE-=o.

The first of these shows that there exists a function Z of « and « which has the properties
expressed by the equations

oZ 8Z

and then the second shows that Z satisfies the differential equation

0 [+ 04 *Z
oo <H a_cr> =
If Z can be found in accordance with this equation, the values of z, and ¢ answering’
to any simultaneous valueé of & and « can be deduced.

There is a relation between Z and z, which can be obtained very simply by introducing
for a moment a quantity = by the equation

w = PO/P’

for then we have

do‘ __Po _

T dp = dw,
and it follows that we have at once

T 0w T ou’

and

_ oz _ 0

0w, T
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ON LAGRANGES BALLISTIC PROBLEM. 175

These are the relations of duality familiar in discussions of partial differential equations,*
and we may put
ox ox
7=yt = —

%o ox, Ty
Actually 7 could differ from the right-hand member of this equation by a constant,
but as such a constant would be irrelevant, the above will be taken as the relation
between Z and .

The equation satisfied by Z can be written in either of the forms
82/ /1 dIINOZ  o*Z

g e ="

07 (1 du><az YA
aros T\2MT de +8s) 0-

or

7. Relation between Pressure and Density.—The analysis of the problem is not rendered
more difficult if the adiabatic relation between pressure p and volume v is taken in
the form p (v — b)” = const. instead of the more ordinary form pv’ — const., and
the former is more suitable for the applications which we have in view. We shall
accordingly take the relation between pressure and density to be

o e

where 8 and y are constants. Then the following results can be obtained without
difficulty :—

2 (Po‘/ B=p)* [B=py p \T2
“y=11 Bm < Po B—p> ’
_ 2 Doy (B Puﬂ
- y—1 { Bro J/
— PoyB LE"
“ {Po (B—PO)J ’

P = polofa)™*,
II =a (0'/70)27!7
where 2 has been written for (y -+ 1)/(y — 1).
The equation for Z can now be written

L 2l L
80'2 o a(r a’l(/

=0,

or

FL o n (o 8_Z>_
o 9 w+s‘<ar tas) =

* The reduction of the equations governing the propagation of plane waves of finite amplitude to a
single partial differential equation of the second order was effected by Riemany, who worked with  Eulerian *’
equations. The use of the principle of duality to connect Z and « was noted by HADAMARD.

VOL. CCXXIL.—A. ’ 2«
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8. Integration of the Equation in Special Cases—When n is a positive integer, the
equation can be integrated. We write for a moment D for 8/0u, and observe that, if
D were a constant, the equation

#Z mdZ
80’ e aa' DZ

would be a form of RiccaTr’s equation, and could be integrated in the form

7= (1 2} Ak D)
- o aO" ’

a

where A and B are independent of 5. Treating them as functions of u, we obtain the
general primitive of the equation for Z in the form

2= (L 2" [Rlotu) /o).

a J

o do

9. More General Integration.—Interpreting the variables » and s as the co-ordinates
of a point in a plane, RIEMANN showed how to intégrate the equation for Z when the
values of this function and its first differential coefficients are given along an arc of a
curve in the plane. If V satisfies the “ adjoint 7 equation

*V 0 o/ VI
s e 2) () = o
9y (% Z%_Z_>}_EL [ <§X_J%_V_>1] :
”[ {Vﬁas +‘)‘+8, 0s le or  r+s/) dr ds,
taken ox;er any area in the plane, is equal to

o [ 0 CYAREY AN *V /3
NV a5+ (3 -2 (o (2 + &) ()t | aras

and therefore vanishes. It follows that the line-integral

V(5 ) oG- 355) @

the integral

taken round the boundary of the area vanishes.

Let the values of Z and its first differential coefficients be given along an arc AC of a
curve, and let P be a point which is not on the arc. Through P let lines PA and PC
be drawn parallel to the axes of  and s, and let the area of integration be that bounded


http://rsta.royalsocietypublishing.org/

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ON LAGRANGE'S BALLISTIC PROBLEM.. 177

by the arc AC and the lines CP and PA. The contribution of CP to the line-
integral is

R s
or 0s  r+s
-c
which may be written ‘ g
A
7 (&Y _ AV P
V2= [VZh— | 2 (5 2 as
The contribution of PA to the line-integral is
,
| (@, e
pa \OP 7S

Now ‘we can find a function to satisfy the equation for V, to make V=1 at D, and
so that, along CP, where 7 has the same value as at P, 3V/ds = nV/(r - 5), and along
PA, where s has the same value as at P, dV/or = nV/(r I-s5). Then the value of

Z at P is .
YA/ oV #V)
7 na gy_nyv
[VZ]e— j {V<88+ )d +z<87 ) ay.

The required function V can be shown, after Riemany, to be given by the equation

V-—<T+S> F(n, 1—n, 1, ),

r +

where I is the symbol for the hypergeometric series,

(= — (r—=7") (s—5')
() (74

and 7', s” are the co-ordinates of P.

It may be observed that if # is an integer the series termmateq and V like Z is
expressible in a finite form.

It will be useful hereafter to note the formulee

oV aV _ (r+s)?(s+2) (s=5) d
o rts (¢ 45"y dé
oV _aV _ (r+s)2(r+s) (r—2) d

s  r+s (# + &)+ EZEB (n, 1=, 1, §).

F(n, 1-n, 1, ),

Tae PROGRESSIVE WAvVES 1N LAGRANGE’S PROBLEM.

10. The Progressive Wave from the Left.—Let the positive sense of the axis of z be
from left to right, and let the initial positions of the two pistons be given by a, = 0
and z, = ¢, where c is positive. We shall denote the mass of the piston at x, = 0 by
M, and that of the other piston by m.

202
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The progressive wave generated at the piston M is determined by the equation of
motion of this piston. This equation is

ou
L - = —w
or TP

and it must hold at z, = 0 for all positive values of ¢. It may be written

a—u“ . (9;‘271—}»]
M= —op, %) ,

and, since in the progressive wave s is constant and equal to is,, or ¢ — u = ¢, it

di = _.___M_<@>2n+ldo-)
WPy \o

gives

from which, since ¢ == &, when ¢ = 0, we have at x, = 0

. MO_0 { <O_O>2n 1
o= % (T gL,
2nop, \o J

Put for brevity
H — IVI(TO&/ZTMDPO’

then we have the values of « and ¢ at #, = 0 connected by the equation

=t

Now in the progressive wave we have
w11t = f (o),

where the function fis to be found from the condition that at @, = 0 the above relation
holds between « and 7. Hence we find

Flo) = = {i=(2

L

and the progressive wave formula can be written

at+H <1Q>2"
x,+H o

In the motion described by these formulae any plane of particles, specified by a value
of z,in the interval 3¢ > z, > 0, remains at rest until # = #,/a, and then moves with a
velocity w, which is equal to ¢ — &,. Therefore the value of @ answering to these
particles at any subsequent time is given by the equation
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7 (o 2n
X =oc0+J w dt =9c0+J (oo—0o) ZnM T
zola o ’ a o

or

@ = @+ g—"(m(,—ka) [2:?’_ T {<:_l’>2n—1 ——1} - {<Z—‘)>2" —-1}] .

This equation holds so long as the plane of particles is in the region occupied by the
progressive wave. In particular, the displacement of the piston M is given by the
equation

I

2n ( (-;) H [/ 2n cr—~a-0>t

T -1\ on—1

3T

/

in which

The corresponding values of Z are found from the formula

Z = moﬁoi +ut—x,
ox,
in which :
9T _ py B=p_p_ _ <1>2"“1
ox, .p Py B—p o
to be
H{ 2n o < \2n- gl
on—17" 7" 9n 1 ) J:

11. The Progressive Wave from the Right.——The equation of motion of the piston
m is
m —a—% = 0P
ot ’
and we put

h = meyaf2nep,.

Since in the progressive wave r is constant and equal to 4y, Or o - # = o, the values
of o and ¢ at x, = ¢ are found to be connected by the equation

=@ -

and then the progressive wave formula is found to be

al+h_ _ (@>2n
cth—x, \o
The value of « for any plane of particles specified by a value of 2, in the interval

3¢ < x, < ¢, and for any time later than that given by t = (¢ — %)/a, is found to be
given by the equation
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. o, o\ 1 _ 2n o\ 1
X = xy+ (—z—(c+h—_%) H<;‘)) —-1} o {<;—> —]'f]’

which holds so long as the plane of particles is in the region occupied by the progressive
wave. In particular, the displacement of the piston. m is given by the equation

/ . \
X = c+ 2n (m,-v)ﬁ-( 2n ¢“(T,,>ﬁ,

in which

The formula for Z is found to be

7 — C+]L - {(9:9)2”*1_11 h (O'O—O').

T (en—1)a " \o |7 a

TeE FirsT MippreE WAVE.

12. Conditions satisfied at the Receding Fromt.—In the progressive wave from the
left s is constant and r variable. The greatest value of », which is the undisturbed value
300, travels at the front of the wave, and continually diminishing values of r, generated
at the piston M, travel after it. Similar statements, with » and s interchanged, hold
for the progressive wave from the right. The fronts of both waves travel along the
tube with velocity «. When they reach the middle section, a compound wave begins
to be generated there, and transmitted in both directions, encroaching upon the original
progressive waves. This wave has a receding front, along which s is constant, travelling
towards the left, and an advancing front, along which r is constant, travelling towards
the right. The constant values of » and s at the two fronts are equal, and each of them
iS —%o'o. .

At the receding front the variations of @, and ¢ are connected by the equation

da,+ 11 de = 0,

while the values of w,, ¢ and & are connected by the progressive wave formula, which
can be written

x,—IIt+H <1—%I~> = 0,

so that the variations of w,, £ and Il are connected by the equation

day— (I1 dt +¢ dIT) — %dII —o.
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On elimination of dx, there results the equation

211 dit + <t+ %) 1l = 0,

which can be integrated in the form

N2
<t+ E) Il = const.
. a

To determine the constant there is the condition that when a, = ¢ and ¢ = }c/a, the
value of 11 is @. Hence at the receding front we have

(at+H)II = (%chH)Za
or

(,+H) (ot +H) = (c+H)™

13. Conditions satisfied ot the Advancing Front.—At the advancing front we have
in like manner

de,—Ildt =0 and c+h—a,—11 <t+ h) 0,
leading to :
(at+hP 1l = ($c+0)a
and

(e+h—uz,) (at+h) = (Fc+h)".

14. Conditions determining the First Middle Wave—1It will now be convenient to
restrict the value of # to be an integer. This happens when y has one of the values
3,5/3,17/5,9/7,11/9, . . . With a view to applications, in which the value of -
is 1-2 nearly, we shall take the value 11/9 for , or 5 for n. Then in any compound
wave Z has the form

(5 % > {F (o +10) :—f(o-;u)}’

10567 F (6 +2u)— 10557 FO (5 +u) + 450~ F? (c+ 1) — 10078 F® (o4 u) + o F? (o +u)
+10567" f(o—u)—1055"% fO (¢ —u)+ 4507 f© (e=u) =106 f@ (c=u)+o7? f@ (c—u),
where F© F® and so on stand for the first, second, &c., differential coefficients of
the function F with respect to its argument. We have to determine the unknown.

functions from the values of Z at the advancing and receding fronts.
At the advancing front, where r = 45, and o = %o, - 5, We have

Z = },»(c+h)a—"{(%;m> —11 (Fy—s),
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and at the receding front, where s = loy and ¢ = 4o, -+ 7, we have

. o o

Z=—~1-H“—-’°J< 7 >_1} Heo ).
. a e+ o (z0=7)

15. Determination of the First Middle Wave.—To determine Z from these conditions

we may have recourse to RIiEMaNN’s method, taking the curve AC to consist of

segments of two lines AB and BC, which meet at

s the point B, where 7 =s == }s, and are parallel

e B respectively to the axes of s and 7.
We have then
P )
| v(a—z—+ 2% ) s+ | z<‘ﬁ_ﬂ)dr
cp 08  r+s PA or r+s

-+

, ez, 5,
Fig-2. +LBV 88+')"+8 ds

Lxcz <%_TY _%> dr = 0.

This equation is

[VZl, - [VZ]O"'LPZ(?ZY - 5V>d(e+jPAz<QY-f V)

+[VZ]y—[VZ—| Z (‘?Y _ -931) ds+| 7 <9-Y - ﬂ) dr = 0,

Jan és r+s

or

r v _ 5V
204, ) = V2L~ [V 2y + (V2] + |7 (‘g - -i--> as-| 7 (%‘;7 =2V gy,

r+s 7+ 8/

where 7/, s’ are the co-ordinates of P. Also at A we have

SR d .
r=4¢, s=¢, (=0, V= <259—t‘sw> , Zi=%(c+h) @{< 2 ) -1} - /“[;(%Vo'“é"):

45 a \do,+5 7
so that ’ ,
9 ‘1 7\ 5 a2 N5
_ A roy+ 8 h 5o+ 8
VZ], = 3 (c+h f—"{ o -—(NO >}—~~ Ltoy—s <40 —).
[ ]A 9 ( + ) po (,),f+81)9 (%0-04-8’)4 Y p (A‘TO ) s
At B we have ‘
r=8 == %o‘o, Zi =0,
so that ,, ’
LVZ]B = 0. )

At € we have

/1 A\ 5 N » 9 T

7+ a \&oop+1"
so that
: 9 1 A\ 1 A\5
: 50, 1" H N (Bt
VZ], = —4H ﬂ{ 7 (e >}+ H oy oy (Rt
[ ]C 9 a (7“’—}«_3’)5 (%O'O-M‘/)‘ \ s a (2’ 0 ) s
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Along AB we have

d %O'O—rs
1 1 ) (L
%}7— 75-:73 (2"““)((2;‘;93)(, (20t 8) (20 -180¢ + 4206 280¢7)
where
o Un=) (s=9)
o that (7/"+s" (Sog+5)
so tha :
oV 5V ol (c4-h) o, o 1 (3oy+8") (Foy—17)
/( ):j[ 0 0>__ 20+ 200
J Os ’)‘—t—.’»‘ ds ¢ 9y %rro+8 1 (z"’o 3) (7"’+«S")6
X [20( & {-b) +180 (20'0 ')")( )(%‘,‘70'*‘3)2
B 7+ |
1420 Bt (s=8)" (b +5) +280( ) (s— s’)g] s,
(" +5) (0" +)?

Along BC we have

o o H
7= —1H% {<__0__> —_ }+ = (Lg, —
g % - 1 a (20'0 T))

oV 5V (ocro+7')(2cro—s)(%ao+r)3

(20—180¢+42087—280¢?),

F (" +5)
“where
(= — (30 —5) (r—1")
. (7+7) (o 7)
so tha

?X_E_Y_> [ [_H%J/ % >g } H 4](m+7)(m—8)
J- 7<8; T+ dr —Laﬂ 9o \LQ%%M* =t &“(z _7)_ (' +5)

* [Qo(mw)*ﬂso (=) (r=r) (B 4 7)"
'+

+420 (20'0 9’)2 (/"—7//) (2“'ﬂ+7') +280 ( —S ) (7 _0")3] (?Z,),'
GEyE NCET
There is no difficulty in the integrations. After they have been performed, we may
suppress the accents on 7" and s’, and so obtain the formula for 7 in the first middle
wave expressed as a function of » and 5. We find, for example, as the coefficient of
(¢ 4 h)oy/9a the expression ' :

\9 1 .. 2\ D
< Ty ) __<2°?) 4"5) (zo'n+5) (30'0 ) {90.04_5 (%0.04,3)4}

r+s r+.8 (r+s)
)2
(20’04‘(;9)4%;;0 r) {81ay"=900," (§ay+$) + 15 (§o0+5)'}

_ Gavts) (oor ) {1896, —42000 (Foy+ s’)+27()a-02(2o-0+5‘) —35 ($o0+8)*}

(r+s)°

(z”ﬂJr(‘:)Jr(z;’O““) {1260- —4200," (300 +8) + 5400, ($00+8) — 3150, (30, +5)°

1
+70 (go‘o + 3)4_( .
VOL. COXXII.—A., 2D
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In this expression we put
Soy—r = (%0'0'*‘3) —(r+s) = % (oy+o—u) —o,

and find that the expression is the same as

< ag> {% (;w}’

' (0'—'20) = jf};g {009__ %—5(0")—!—0'——%)5 {1260‘04-—2100’03 (0'04—0'——’1/0) + ],350'02 ((ro+(r——u)2

where

=840, (=) + 3 (oo —u)'} |

The remaining terms in the expression for Z may be treated in the same way, and we
obtain finally, as the expression for Z in the first middle wave,

y _ {e+h)a ao Um { o— u) (l @>“{1/_f_1(g;ﬂ)}

9a o Jo o

R e

in which the expression denoted by ¢: has been written down, and v, is given by the
formula

1

mg (0'0 + 0'—7,0)5 (0'0—-0'+ u)'f".

2 (0"“7/‘) = -

It may be observed that the differential coefficient of the function ¢, is given by
the equation

oV (o —u) = — §(°’u+"’“‘“)4 (o= +u)t

Although the actual calculation of Z is rather long, it is comparatively easy to verify
that the form obtained satisfies the conditions by which 7 was determined.
16. Transformation of the Formula.—The form taken by Z in the first middle wave

18
( > [ @, (a+u) +¥, (o— u)]f
o Oo; l o .
where .
(e bu) = = 00 gy (o) = By )

¥, (5—11) = (.c:%/_(;)_“ by (o —11)+ ]‘i (o),

so that &, and W, are rational integral functions of the tenth degree.” Now it is impor-
tant to observe that when 1 <y <8,

(1 a(r) (rr+u)} (— )<1 ao->{ -ﬁl]
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while for v = 9 we have

<1-§—>4{("+“)91,» = 2(2.4.6.8)--(l -—a—>4{(“_“)9},

a J

and for v = 10 we have

<]—' iﬂw} = 2u(2.4.6.8.10)+<£§>4{(i1“>—m}.

ocdo/ | & o do o

It follows that the expression for Z can be written either in the form

2= (L2 Qe gy,

NG~ aCT' a

Z = (1 —(1>4 { M} +ky+ 1w,

N2 80‘ a

or in the form

where
K, =2.(2.4.6.8) x the coefficient of (¢ —u)* in ¥, (e —u),
L,=-2.(2.4.6.8.10) x the coefficient of (¢ —u)* in ¥, (o—u),

ky, =2.(2.4.6.8) x the coefficient of (s+u)° in ®, (¢+u),
i =2.(2.4.6.8.10) x the coefficient of (o+u)" in ®, (¢ +u),

—

[

-

and Q, and ¢, are certain rational integral functions of the 9th degree. The explicit
expressions are

K, = =} (c+h) (ofar), Ly = —hla, k = tHofa, U =—Hla,

_ o _ h—H 2 )2
CQ (otu) = 189(m(c+h H)+15x2ga {oy?— (o +u)*}

gﬂéﬁ;h—;m {3156, (¢ +u)—4200, (o + u)®+878a,* (c+u)
X z°a R
—1800, (o +u) +35 (o +u)'}, -

and ¢, (e—u) is obtained from Q, (s+u) by writing — (o—u) for (c+u).

17. Incidence of the First Middle Wave on the Pistons.—The values of all the quantities
at the piston M, at the instant when the first middle wave reaches it, are to be found
from the formule, connected with the receding front of the wave, by putting x, = 0.
We see that the receding front reaches the piston M at the time T;, where
(bo+ Hy _H

i

T, = aH a

that the corresponding value of + is 3, where
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that the corresponding values of 7, s, u are Ry, S,, U;, where
Rx = 231"'313"0"0) SI = 3’?0"0» U-) = (0"0“‘231);

and that the corresponding value of Z is Z,, where

=4 =g (2}

In like manner we see that the advancing front reaches the piston m at the time

t;, where _
(dc+h)® h
L= 2L,
ah . a

“and that the corresponding values of o, 7, s, u, Z, are oy, 71, 81, %, 2;, Where

h 1s
g = 0y <;%:E:—7L , "= %0'0: 8 = (0'1”21‘0'0)9 Uy = g9—0,
U 3 M VA
Ya A

Tae Frrst RerLected WAVES.

18. Conditions determining the First Reflected Wave from the Left—After the instant
t = T, the formule belonging to the progressive wave from the left cease to hold in
the neighbourhood of #, = 0, and a new compound wave, the first reflected wave from
the left, is generated there and encroaches upon the first middle wave. The junction
is characterized by the value R, of . The conditions determining the reflected wave
are the condition which holds at the junction, where r = R,, and the condition which
holds at the piston, where , = 0. 1t is further necessary that x, should vanish when
r =R, and s = S,.

The condition which holds at the junction is that the value of Z, calculated from
the formule belonging to the reflected wave, should be equal to that calculated from
the formulee belonging to the first middle wave when » = R,. The condition which
‘bolds at the piston is the equation of motion of the piston, viz., that at z, = 0

o
é‘t = — wp,

The condition that x, should vanish when # = R, and s = S, 18 the condition that
0Z4[0s should vanish for these values of r and s.

To express the condition which holds at the piston in terms of Z we substitute
Po (o]o)" for p, and
0, <ax0 ot ox, 8t>

o 875&'5125;
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for dufot. 'Then we have
M 8, _ _< ><@~@ a_t_a_wz>
wPy do Oo= OU ou Og

Again we substitute — II 6Z/0s for x, and 9Z/ou for ¢, and put 9Z/ds = 0, obtaining
the equation

*Z &*Z ( 0?7 \? 1011s," *Z

30?0 \doou T T T ot 00
The condition which holds at the junction is that

Z = (l 8> j_ﬂ}.{,K + Ly

o Oo

for all values of & and » for which & + u = 2R,.
19. Determination of the First Reflected Wave from the Left.—These conditions can be
satisfied by assuming for Z the form
4 [

AN
7 - <l 8) IF, (f’”+”)}+K]+L,u,

0'80' l a

expanding the unknown function I, in the series
Fi(oc+u) = Aj+ A (o +u—2R) + A, (e +u—2R,)* +

and finding the coefficients of this series.

The condition which holds at the junction determines the coefficients Ay, A, ..., A,.
The condition that 0Z/ds vanishes whenr = R, and s = S, determines the coefficient A,.
The remaining coefficients are to be determined by the condition which holds at the

piston.
We have
{! () EnEC)
(e a en
ngo) F®
o (o'+u) | (a+u) VKot Lo,
o’ o

from which we find .
DA = Q2R A, = QO(2R), 2! A, = QP (2R,), 3! Ay = QP (2R,), 41 A, = QP (2R,).

We have also

3z _ 945B(a+u 945F (a+u — 490 “’g' +u
o o
: @ () p
'+105F* (:ﬁ“)—w}’* {;“‘HFI (:f“),
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and the condition that this vanishes when r = R, and s = 8, gives

! . { | 1AL
—o45 80 poas i uo02lls 053l A al A 51 A,

2110 219 218 217 216 + 215

= 0,

thus determining the coefficient A;. It is seen easily that 5! A; = Q. (2R,).
Now when 0Z/0s = 0 the differential equation for Z shows that
oa® - ou?
Also we have in general

2 @ 3 4) (5 (6
g_u_Zz_= 1051?‘l (Oi-)-ku)_l%Fl (O;+u)+45Fl (oT-+7,L)__10F1 (o(;+u)+F1 (a;Jru),
A g a a a
2 1) 2) (3)
PZ _ _gysth (g+u) 945 ((T_u) _ 490t (Z+u)
ao‘au o o a
105 F,® (:+u) _15F](5) <i+%) N F,® <i+u)’
o o o

and therefore when 0Z/0s = 0 we have the equation

0_2 { 10 5F1(2) —105 O,Fl({’,) + 45 0_2F1(4) —10 O_3F1(5) + O'4F1(6) }2
—{945F, P —9450F,% + 4205°F, ¥ - 105°F, ¥ + 155'F, % — °F,®}?
+10H (0y°/ar) {105F,® — 1056 F,9 + 456°F, @ — 106°1",® + o' F, @} = 0

as well as the equation
945F, — 9455 F, % + 4206 F,? - 1055°F,9 + 155 F, Y —"F,® = 0.

The equation expressing the condition which holds at the piston is linear in 1\,
and therefore can be solved for I, without ambiguity. As it holds for » = R, and
s = 8,, it determines the coefficient A,. The equation in question holds for all values
of o and u for which the equation expressing the vanishing of 8Z/ds holds, and it can
therefore be differentiated totally with respect to o, v being treated as a function of «
in accordance with the equation 9Z/dc = 0. This process yields an equation which
determines the coefficient A; without ambiguity. A second differentiation yields an
equation from which the value of the coefficient A; may be found. By proceeding in
this way we may obtain as many of the coefficients A as we wish.

This method of determining the coefficients A, A;, ... is not very well adapted to
numerical computation, and other methods will be explained presently.

20. Determination of the First Reflected Wave from the Right—The junction of the
reflected wave and the first middle wave is characterised by the value s, of s. The
conditions determining the reflected wave are the condition which holds at the junction,
where s = s, and the condition which holds at the piston, where x, = ¢. Further,
x, must be equal to ¢ when » = », and s = s,.
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At the junction, where s = s,, the value of Z must be the same whether it is found
from the formulee belonging to the reflected wave or from those belonging to the first
middle wave. At , = ¢ the equation of motion of the piston, viz., the equation

ou

must hold. The equation — I10Z/ds = ¢ must hold at 7 =, and s = s,.
To express these conditions it is convenient to write

Lo 4( o, )
/AR 0 i/ :
<o- 80’) 945a0 +
then 7’ satisfies the same differential equation as Z, and 0Z'/do vanishes when , = c.
The condition which holds at the junction is that

7 = (}_ 9_)4 {9'._1_(_‘7:}_‘)} +k+lu

A
o OO ag

for all values of & and « for which & — u = 2s,.
The condition which holds at the piston is that

PL L LN 10ho, X
do? ou? (80’ au) = Taot 30
when 07/ [ds = 0. '

These conditions can be satisfied by assuming for Z the form

_ (10 Lfeo) 1/ ]
7 = (U 80)[ 1945& Filo u)}]+kl—tllu,

expanding the unknown function f, in the series
fi = ayta, (o—u—2s) +a,(c—u—2s )+ ..

and finding the coefficients of this series.
For the coefficients a,, a,, ..., a, we find

l(]

-t ()45 = ¢, (2s), @ = ¢ V(281), 21y = P (25), Blay = ¢, (25,), 41 a, = ;% (25)).

The coefficient a; is given by the equation

21 31! a 4'a, 5! a,
—945- % 1 945 % _ 490 L1052 P 1520 2T
o oy’ o’ o o, o

= 0.

The remaining coefficients can be determined from the condition which holds at the
piston in the same way as the corresponding coefficients in the formula belonging to
the first reflected wave from the left could be determined.
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21. Relation between Pressure and Velocity ot a Piston.—The equation in terms of
‘o and «, which holds for the first reflected wave from the left at z, = 0, is the relation
between the pressure on the piston M and its velocity during the time that the wave
is being generated. It may also be interpreted as the equation of a certain locus in the
plane of » and s. This locus passes through the point (R,, S,), and we may take its
equation to be of the form

PRy = B, (5—8)) + (By2) (s—8,)2 + (By/22) (s—8, + ...

Now if the coefficients B were known, we could determine z,, as a function of » and s,
from the known value, zero, of the function along the locus and the values of its differen-
tial coefficients along the same curve. These differential coefficients also are known
along the locus. To prove this and obtain formule for these differential coefficients,
we write X for z, and observe that the equations of Article 6 show that X satisfies

the differential equation
Kl <] 8X> 0 ( oX)
ou \IT 3w/ ~ 30 \IT 30/’

which can be written either in the form

X 100X X

do* o do P

X s (X, 0X)
oros pr4s\or os/

or in the form

Further at x, = 0 we have

) ; 11 1
ou [0 o a0, a
___-m"_ﬂ_u.._,‘*iﬁ<_,\ — 0( N,

af/ M - lV[ 0'0,/ - ] O [{ O/
and , \
N @;’1‘_’}9 R 8900 Ca (E)w §£€)
ou do dor - o,/ oo

ool _sma =T+ ES S

0o du  On oo oo o do/ | du/ |

where do /du is to be found from the equation connecting » and s. Thus we have along
this locus

do

dx, _ __ 10H Oy _ M o
e A TS P
: ll <rln>} v ll (dn /

The equation for X is similar in form to that for Z, and may be solved by RieMANN’S
method. When this is done the coefficients B in the equation of the locus may be
determined by identifying the values of X at r = R, with those given for z, by the
formule for the first middle wave.
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22. Integration of the Equation for X.—We write the equation

#X 5 [oX . oX\ _
a*”was'm(EJ“a—s)"o’

and consider also a function Y which satisfies the adjoint equation

oY 9 Y
PREL (a_r + 89) (7'+8/)

Then the integral

2 (-2 2 (2 2 v,

taken over any area in the plane of (r, s)
vanishes, and therefore the integral

JY@}—{—&)OZ +X(Z+ 2 ar c ;

Jds  r-+s or  r+s/

taken round the boundary of the area also

vanishes. “
We take the area of integration to be Fig. 3.

bounded by an arc of the locus along which
X = 0, and two lines parallel to the axes of s and » and meetlng at the point P, where
r =1 and s = s’. Let these be the lines PA and PC. Then we have

[YX]=[YX]o | <%§+;5g—)d - Y(%}f 75i>d X(UY 1%0”

+j X<%—Y+£>dr = 0,
cp 7 r+S

or, since X = 0 on the arc AC,

[YX]P=J Y8—X~d J X(%+--5X>d+[PX<%+%>dﬂ

We choose Y so that, at P, Y = 1, along PA, where r =/, 0Y/0s = — 5Y/(r + s),
and along CP, where s = ¢, oY /or = — 5Y/(r 4+ s). Then the value of X at P is

‘ Y?Eds

The requisite form of Y is

v = <fy./—|—s/>5F(G’ 51 §),

r+s
VOL. COXXII.—A, 2 B
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where

and we have

23. Determanation of the Coefficients B.—The integral j (Y /o) du may be evaluated
AC

approximately by assuming, as in Article 21, that the equation of the locus, of which
AC is an are, is of the form '

(T—Rﬂ)/zl = B,d+ B8+ Byd*+
where J stands for (s — S,)/%,. Then along AC we have

w-~U; = 3 {(B,—1) §+ B+ B,°+...},
du = 2, {(B,—1) +2B,d+ 3B +...} dJ,
X — (7A +3,)5{1+30 (7‘ ;")(3 s ) +9210 ( "/7‘/)2§‘9;—'9,)2+_'.}.
o (r"+5) o (»"+5') o?
Also any inverse power of o can be expanded in powers of § by means of the equations

o=3 {1+(B,+ 1)8+B232+B38“+...},A
S k) o—3  «k(k+1) <0‘—El>2_ }
o= 21 {1 K El + o1 ’ El )
which give :

ot = 21~K[1—K(B1+1)3-_ { \ "("+1)(B +1)2}32

— {KB3—/< (c+1)(B,+1) B+ ’iﬁ’f_ﬂél!(’“_"'_?) (B, + 1)3} 8

_ {KBF et o (o41) (B, 1) B 2t Dt 2) (g e,

31
_K(K+1)('<44!'2) (x+3) (Bl+1)4} 5‘—-‘..]-

To obtain the expression for X on r = R, we have to put R, for 7/, so that

r—r' =3 (B,d+ B, + B, +...),
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ON LAGRANGE'S BALLISTIC PROBLEM. 193

and for s—s we have to put =, (J—¢'), where &’ stands for (s'—S,)/2;. If the expan-
sions are carried as far as the fourth order, the result is that, to the fifth order in &,

LC(Y/rr)du=(B,—1)3’+{B2 (3B,—2) (B,—1)} 8"
+{B,—8B,(2B,~1) + (7B’—6B,+2) (B —1)} &
+ {B,—2B, (3B,—1) —3B2+4B, (42B~33B, +5)
, —%(28B*—21B?+9B,—-2) (B,—1)} &
+ {B,—1B, (30B,—7) —6B,B, + 11,B, (210B*~108B, +7) ’ |
+1B,2(105B,—27) —4B, (560B,>—462B*+81B,—7)
+1(126B*—56B3+21B.2—6B,+1) (B,—1)} &".

Now at any point (Ry, s') on » = R, the formula for the first middle wave gives

oo T o

= { 945Q, (2R,) +9450Q,Y (2R ) —4200°Q,? (2R,) +1050°Q,® (2R,)
~150'Q," (2R,) +0°Q (2Ry)},

in which we have to put o = 3;(1-+4). Then, since x, vanishes with &', we have
without any approximation '

@y = —;% [{9452,Q,% (2R,) —8402.2Q,? (2R,) +8152Q,” (2R,) —60=,'Q, (2R,)
| +5357°Q,9 (2R} &
+{—42022Q,2(2R,) + 8155,°Q,O(2R,) — 902, 'Q,“ (2R, ) + 10Z,°Q,"(2R, )}3’2
+{10522Q,2(2R,) —602,'Q,* (2R,) +10=,Q,” (2R,)} ¢"
+{—152Q9(2R,) +52,°Q,® (2R,)} 8"
+3,5Q,9 (2R,) 9°].

The coefficients By,..., B; can be determined successively by equating the

Y

coefficients of powers of & in the expressions for [ (Y/s)du and —z,/5H. If
’ AC

additional coefficients By, ..., are desired, they may be found by equating to zero

the coefficients of powers of ¢’ higher than the fifth in the expansion of LO (Y /o) du.

The expansion of , (Ry, §') in powers of &’ may, of course, be found from the expression
for Z in the first middle wave without transformation to the Q form. In particular it
may be proved that B, = 6—43,/o,.

24. Second Method of determining the Coefficients A.—When the coeflicients B are
known, the coefficients A, ... may be found in the following way.

-2 ®E 2
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194 MESSRS. A. E. H. LOVE AND F. B. PIDDUCK
Since @, which is —a (¢/)" 0Z/ds, vanishes at all points of the locus
r—R, = B, (s=8,) + (B./Z,) (=8, + (By/Z?) (s—8,)* +...,
the expression
945F,(2r) —9450F P (27) 4+ 4200°F,?(27) —1050°F,? (27) + 150*F,® (27) —*F,® (27),

in which
F,(2r) = A,+A, (2r—2R,) + A, (2r—2R,)* +

must become identically zero on substitution of

2, (B0 + B+ B+ ...)
for r—R, and of
{14+ (B+1)3+B,8+ B+ ... }

for 5. Now the powers of «/3; and (r—R,)/s, can all be expanded in powers of J,
and then the coefficients of the powers of ¢ in the expansion of

F,(2r) . o FO(20) >2F<2> (20) < o | B0 2r)
Q S \9) iy —105
945 —L_—~= >0 94}521 K + 20(\21 oK N oK

4 F @) (2,),) <0. >5 F1(5) (27‘)
+15 (,2) K SRR

can be equated severally to zero. The equations thus arising give the values of
A, A, ..., successively. Suppressing the algebra, which is rather long, we may write
down the results in the following form :—

The equation for A, is

lG!zf}G — 945 (B, )22;& +105 (5B,—3) 32*?
| —30(5B,—2) 42!:‘:*4+5(5B ~1) 5'2{}
The equation for A; is .
2B 17'1A = 2B12<94§ 212?2-—945 3élA 421A zlA +1 ‘f)
+2B, (Bl+1)<—945 2%%8403;* —315 zff“*+60 =5 ;1A>
+(B+1) <420 221A —315 3lzf}ﬂ+9o ‘élA ~10 5;1*4) |
+B, <945§9 1050 Zf} +52 3;1A - 21A4+25 Eé"’-z'mz?ﬁ)
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The equation for A is

4338;& = 4B 3<945 321A —945 4;}4 +420 5215& 105 62A6+15 7;1A)
+6B72(B,+1) (-945 3;}* +840 42*3 t_315 il{}awo 6;4&6 712%\
+6B, (B,+1)? <4203!2é ~315 42:‘}%90 5‘2115* _10 b‘g}é)
3(B,+1)"(~105 3211* +60 4’2‘} _10'5;]{}5>
oy Lt 1)
+3(Bx+1)B2<—105og—2?A~+10503'2‘}3—4504'2:;‘*%1005;?5—106;?6)
+3B, (945%—1050 2;?‘ ‘*‘21} 5 422?4”5'5!2:;&5_2 6;;;6>__
The equation for A, is |
ZBI@E—?** = 9Bt (945 4;?4—945 5;?5 1420 @21—{}67—105 7;2_14_ 15 8_EIA>
+4B13(Bl+1)< 945 42% +840 5;? —315 Eémrso 7;1A 8‘;})
+eB,2(B]+1)2< 4-2{}4 Ef}a%go Q;:A 10 ,7_12%>
+6B, (Bl41)3<—105 4;*} +60 2*’}5_10 6;;{})
6 (B, + 1)4<15 ‘“2113 _5 5'21A )
B O N
6(B1+1)(3B1+1)B <420321AL —315 Zf}wgo 2? —10 (3‘121_%}_@)
+3(B,+1)B, < 315 3;{& +180 2;‘} —30 5;{%) | |
+3B; <420 %‘é—-—525 3;1}3 +300 4'2? ~100 5’2*’3 +20 G;ffﬁ _9 7;:?}7)
+6B,B, (943221A -—10503'21}%52542"? 150521}"+25 2‘?*}-2@?7)
+3(Bl+1)B< 105032§2+10503;?3—4so42é4+1oo5'2:‘§*5_106’2?e>
REY P QU St ot B

The method avails for the calculation of as many coefficients as may be desired.
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25. Third Method of determining the Coefficients A.—Another nearly equally effective
- process for finding the coefficients A, A;, ..., is founded upon an expression for ¢, valid
at the piston M. :
The equation of motion of the piston shows that at x, = 0,

u _ __ad” ,

ot 10Ho ™
and the differential of u is always

ou U

-3;0 da,+ ) dt,

so that, at z, = 0, ¢ can be expressed as a function of s by the equation

10 s ~11
-, = 1o § <%> [(Bi—1) + 2B+ 3B+ ... ) ds,
1 1 1

and thus ¢—T, can be expanded in powers of § or (s—8;)/2,. Also, since ¢ = ¢Z /0w,
and T, is the value of ¢ given by putting » = R, and s = S, in the formula for the first
reflected wave from the left, we have

t—Tl — 105 {F (8 (2’}") F ¢y (%R )} 105 {F (2) (21,.) F ) (2R )}
o’ 3 . o® 38
F®(2r) F® (2R1)} L JE®(2)  F9 (2R, )} {F ® (2@ F,® (2R,)
: +45{ 10-7 2{1» 10*]~ o 2" o 25 },

so that a different form of expansion can be obtained for t—T,. By equating coefficients
of different powers of d in the two forms of expansion we obtain again a series of equa-
tions giving the values of Ay Ay, ..., successively. The results may be recorded as
follows :—

The equation for Ay is

105{—9(B1+1)A‘+2BZ A} 105{ (B+1)7'A2+2B3'A}

30 30 3P N
+45{ 7 (B, +1)3’A3+2B14;*34}—10{—6(B +1) +2B, 5;*}
a1 e BG'A &) -,
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The equation for A, is

A, 21A 31 A,
105[{—9B2+45(B1+1)}29+2{B —9B, (B 2!]312 5 ]
105 {~8B,+36 (B,+1)} 2 ';32+2{Bg—sBl<Bl+1>}@—*;5+93,B,24;*?4]
. : 1
+45[{-7B2+28(B1+1)2}3'2é3+z{B2e7B;(BI+1)}4’ T 3325’ }

——10[{—6B2+21( +1)2}4'A4+2{B 6B, (B4 1)) LA 2B26'A]

25

+] (=815 (B 1)) } 259 +2 {B,—5B, (B 1)} S + Tl
: 1

= —102 ()" (B3 (B 1) (B

The equation for Ajg is _

105[{ 9B;+90(B,+1)B,—165(B, +1) *;*— 2{B,—9(2B,+1)B,+45B,(B,+1)*} o
{ZBB 9B2(B+1)}3’A _354’2{*]

—105[{—8]334—72 (Bi+1) B,—120 (B1+1)

+2 {B,—8 (2B1+1)B2+3GB (B 41y 3L As 3’ A,

+ g L2B1B2"‘8B 2( 1+1)}

31 A,
27
+2{B;—7 (2B, +1) B,+28B, (B, +1)*

4!A L2 351A5]
B 5

+45 [{—7B3+56 (B,+1) B,—84 (B,+1)?
4T A

: 1A, 25,6l AS
+ g—g{ZBle—-7Bl” (Bl+1)} 5215 BT 9'2"—6]
41 A,

(5.

1

| —10{{—6B3+42 (B, +1) Bo56 (B, +1)

+2 {B,—6 (2B, +1)B +21B, (Bi+1) 5' A,

61A, 25 ,.71A,
+ -é—! {ZBle—GBf (Bl+ 1)} _i.l.g + 5 B‘a'_zf’_}

+ [{—5B3+3o (B, +1) B,—85 (B,+ 1)1} 212
1

+2 {B;—5(2B,+1) B,+15B, (B, +1)*} 6' A

l

+ 2 {2B,B,~ 5B, (B,+ 1)} A 331313%1_}_8]

— —10 E<-—> (B,—13 (3B, +1) By+22 (B,+1)? (Bl——l)}.
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The equation for A, is

105 [{—9B4+9. 10 (B,+1) B, + —9—'2—}9 By—3 59—'1-‘3()—,'—1—1(13&1)2 B,
9.10.11.12 A
+—————-——4! (B,%—l)j21
. ; 191
+2{B4—9(2B1+1)B —9B24 210 210(3B1+1) (B, + 1)B2—9-J??—1'—1-1*BL(B1+1)3} 22{}
: 1

3 I Ag
217

2 JoBB,+B— 9B, (3B 4+2) B+ 210 B2 (B, 4+ 1)
+'2—!‘ 13+ 2 T 1( 1+) 2+_‘2’T 1(1“’)

+§—3,{31312132—9133(]31+1)}4IA 2! B45'A]

216 2 5

—105[...]+45[...]=10[...]
5.6.7.8 8(B +1) }5’ Ay

5.6 5.6.7 5.6
+[{_5B4+5.6(B1+1)B3+ Y Bf—g5—t 31 (B +1)2B+ 4 50

+2{B4—5 (2B,+1) B, 5;(3]314-1)(131“)132_

22 2 2 2 7!A~
+ 5 2B,B,+B,’—5B, (3Bl+2)B+ B (B,+1) KN
. 1
2% ., 8! A 9! A,
+ 2 (387,58 (B 1)) ey e |
11.12
21

11.12. 18 (Bj+1)°
- 31 14 (Bl—]'):l>

=—10H<2> [B— (2B, +1) B,— 1B22+
1

B, (B,+1)B,

(07

where the law of formation of the terms that are not written down is sufficiently obvious.

The formulee of this article may, of course, be transformed into those of the previous
article by means of the relations by which the coefficients B were expressed in terms
of the differential coefficients of Q,, and the relations by which the coefficients A, ..., A,
were. expressed in terms of the same differential coefficients. They are useful in
numerical work as affording a verification of the values obtained for the coefficients
A,, A;, ..., from the previous formulee. :

Formulee similar to those of the present and preceding articles may be obtained for
the coefficients in the expression for Z belonging to the first reflected wave from the

right, but it seems hardly worth while to write them down.

Tur Seconp MippLE WAVE.

26. Method of determaning the Second Middle Wave—The first reflected wave from
the left meets that from the right at the place and time determined by substituting
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R, for » and s, for s in the formule belonging to the first middle wave. When they
meet, the first middle wave becomes obliterated, and the second middle wave begins
to be generated at the time and place in question, and encroaches upon the two first
reflected waves.

To determine the second middle wave we have the conditions that at its advancing
front, where » = R,, the Z belonging to it is equal to that belonging to the first reflected
wave from the right, and at its receding front, where s = s,, the Z belonging to it is
equal to that belonging to the first reflected wave from the left. RiemaNnN’s method
may be applied in exactly the same way as in Article 15. If P is the point (v, §’), A
the point (R,, ¢’), B the point (Ry, s,) and C the point (/, s,), we have

AV oV 5V
2, 8) = [VIL-[VZy+ [VZo+ [ 2(V = 2V Jas— | 72V - 2V gy,
At A we have

/
r =R, s =¢, {=0, V= (R+8>5

r+s

and Z is the result of substituting R, for » and ¢’ for s in the formula
1 j coy? _ .
Zi= bt <o‘ 80'> [o* 19450& +hlo u)}]

>(1 208+ 9082 — 1408 +70¢4),

At B we have

r=R, s=s, {(=-

(R,—7") (s,—¢) V= (R+s1
(" +5) (R, +s,)’ A+

and Z is the result of substituting R, for  and s, for s in the formulse for the first middle
wave, or in those for either of the first reflected waves. For the present we shall denote
it by Zs, and observe that it is independent of ' and .
At C we have
48\
r=17, § = 81, (=0, V=<o7:él’>’

and Z is the result of substituting +’ for » and s, for s in the formula

7 = K+ Ly +<1 a>{—f—"+“}

Along AB, where » = R, and s increases from s’ to s;, we have

Z = I+ (Ry-s)+ (& a>[ {""0 +fl(a—u)ﬂ,

\o 00 945a

Q% ~ ffs = (Bats) 8”, )) (B +8)" 90 180¢ + 42082 2808),
¢ _(RI—T')( s').

(7 +5) (R, +s)’
VOL. COXXII.—A. 2 F
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and along BC, where s = s, and r decreases from R, to »/, we have

1 i)“{Fl (:-+u}}’

o Jdo

Z =K, +1, (¢—sl)+<

2 180¢+4208—-280¢
or r+s 7 +5') (20—180¢+420¢—280¢),

_ _(r=1)(si=5).
(= (' +5) (r+s,)

oV _ 5V _ (81+7")((sl-—s)(s]+9)

The value of Z at (', s’) can be regarded as a sum of terms with the coefficients
ZB’ kl& ll; 00'010/94:566, Qgy Ay eve s Kl: Lla AO) Al) AR ]

and each of these terms may be found from the formula for Z (+/, s’) by performing the
integrations where necessary. The result will be to exhibit Z (r/, s’) as a sum of terms
with these coefficients.

27. Determination of the Second Middle Wave.—No integration is needed in order
to obtain the term which has Z; as a factor, but it is important to observe that Vi,
as a function of # and &/, can be expressed either in the form

M (' —g ) (s 4
Vi = § (R (L5 ) (L=l (e,
or in the form
4 / 4
Vi = §(Rrs) (L 1) {I=L e,

We shall suppress the accents on #' and s’ so as to express the value of Z at (r, s). The
term with coefficient Zj is

_2 (R, +5) % <1 8> {(s—sl);(erR,)“}.

kel

The term with coefficient %, is

2k, (1 8> {(s sl) (3+R,)5}.

oo

The term with coefficient /, is

5h <(l,—_ é%>4{§3_’31)4 (5R,—45,—s) (8+R1)5} .

g

The terms with coefficients c¢o)'*/945¢ and a, are
o, ><1 8>4[1 <s—s1 >4{ <8+R> <9+R
c Fa | (=) [= 1+4
< 9450 '/ \o 0a/ Lo \R,+s, + R,+s 1+s1

s+R s+R,\Y
+2O(R1+311> +35<R1+31> }]’
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The terms with coefficients a;, @y, @5 aTe
a5 ) ) o (32
(i) (]
oo {2 [ (oo o o )]
- (2[5 e ()« (R + G + (e
The terms with coefficients a,, a;, ..., are

N

o oo oo o

and so on.
The term with coefficient K, is

i, (L 2) flr=Blt e,

The term with coefficient L is

— L, (1 0 > {(T—Rl)‘* (551 4R, —r) (.Y

o oo o J

The terms with coefficients A, A,, A,, A, are
R o) ) e (e
1 ! s
A <o‘80‘) [ <]Et1+{s1 +4 R, +s; +10 R,+s, +20 R,+s, +35 Ri+s
_ 1 8 ’}"‘—R1>{ <7’+31> v”r+sl >2
2A1(R1+81)< 60'>[: <Rl+81 1+3 R1+81 +6(\Rl+81
o) pus(zza )]
* 0<R1 19 Ri+s; }
. 1 8>4[1 <7-—R1>4{ <”I'+Sx> 'r+31> <7‘+8x >“ <7‘+31 >‘l]
3A. 1) 2 - - T~ ]. b
2 2(R1+81)< R1+81 +2 R1+81 &Rﬁ-sl R1+81 +5 R1+81 J

_93 : 1 a>[ < R1>{ <fr+sl> <’r+sl 7'+81>3 <7-+sl>4}:|. |
2A3(R1+31)< o e Ut st R1+sl) +(R1+sl +

The terms with coefficients A,, A,, ..., are
SRS TN 53}
oo o | cdc) | o

and so_on.
2F 2
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28. Indication of a General Method.—I1f the coefficients a or A with suffixes exceeding
10 were all zero, the expression for Z in the second middle wave could be transformed

at once to the form
/ 4
(l i) {@L‘Zi&‘)} +K,+ Ly,
o 00 o

N

or to the form .
<_1_ _?_)4{‘14_(_0_‘;“_)} 4 Fa Lo,
o 2 2

o oo

But if these coefficients do not vanish a transformation of the same kind is still possible.
We have, for example, ‘

(L2l o]y v

o do o

(L _a_>4{(°'+u)l2 - (‘T“u)m} = 275! % (302 +11%?),

\o do o j

and thus Z can be expressed either in the form

o oo

<l ﬁ>4{;Qﬁ_(Z_4‘ﬂ)} + K, 4+ Ly +M, (o*+ 112%) + Nyu (80 + 11u?) + ...,
or in the form ‘

4
<}- _@_> {g’—(%:—_@} +ky+ L +my (02 + 1197) +ngu (302 + 11u2) + ...,

o oo

where the factors whose coefficients are written K,, L,, ..., or &, I, ..., are the
homogeneous rational integral functions of o and w of degrees 0, 1, 2, 3, ..., which
satisfy the differential equation for Z.

When this transformation is effected we may proceed to determine the second reflected
waves. The first step is to find sets of coefficients analogous to A, ..., A, and
@y, ..., 65 The next is to find sets of coefficients analogous to B,, B, ..., determining
the loci in the plane of (r, s) along which , = 0 and @, = ¢ during the time that these
reflected waves are being generated. By means of the coefficients analogous to By,
B,, ..., sets of coefficients analogous to A, A,, ..., and @, @, ..., may be found, and
thus the second reflected waves may be determined.

From the formulee for Z in the second reflected waves that in the third middle wave
may be found, in the same way as the formula for Z in the second middle wave was
found from those in the first reflected waves.

The method of solution can be continued, and gives a theoretically complete solution
of the problem ; but when arithmetical computation is attempted, failure may arise
through approximate equality of groups of terms with opposite signs, so that some

quantity, which ought to be calculable to five figures, for example, may only be calcu-
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lable to three. This difficulty was found to present itself in the calculation of the second
reflected waves by this method, and another method had to be sought. An account
of this will be given in the theory of the second reflected waves.

29. Pistons of Equal Mass.—A considerable reduction in the number of coefficients
to be calculated is effected by supposing the two pistons to have the same mass. When
this is so H = 5, and hereafter we shall write everywhere & for H. The calculation of
Ay, Ay, ..., Ajis then simplified a good deal. Further, it appears that the coefficients
a differ only in sign from the coefficients A, or we have

O&O = "—Ao, al = "—A.l, cee

It is now unnecessary to calculate separately the pressures, velocities, displacements,
and times at the two pistons. We shall speak of the piston specified by x, = ¢ as the
“ shot,” and of the piston specified by #, = 0 as the ““ image of the shot.” We shall
generally calculate the pressures, &c., for the image of the shot, because a slight simpli-
fication is effected by putting x, equal to zero.

80. Incidence of the Second Middle Wave upon the Pistons.—The value of s at the
receding front of the second middle wave is that which has been denoted by s;, and
in the case of equal pistons it is the same as R, or 3, —40,. This is therefore the value
of s at the image of the shot at the instant when the receding front of the second middle
wave reaches it. It will be denoted by S,. The corresponding value of 7 may be found
from the formula

r—R, = B, (s—=8)) + (B,/3)) (s—8,)* + ...

by putting S, for s. It will be denoted by R,. From this the corresponding value of
o may be found. It will be denoted by =,. The corresponding value of u, which is
R,—8,, will be denoted by U,. The corresponding value of Z, denoted by Z,, can be
found most simply from the formula for the first reflected wave from the left. We
have

F(2R) s BOER) | BP(ER) _ FOER) | FOER)

Zy = K, +L,U,+105 e —105 =55 37 S0 S5
where '
Fi(2R,) _ (_2_1>m { A, A <2R,—2R2>
2210 B \22 21]0—219 21
L L 2lA, <2R1~2R2>2_ 1 3lA, <2R1—2Rz>3+ }
21 3¢ 2 31 3/ 3 Ty
F.Y(2R,) <2_1>9 {é 214, <2Rl—2R2>
) \S 1E 28 2
1 814, <2Rl—2R2>2_ 1 414, "2Rl—2R2>3 N }
21 37 3 31 3 ( 3 Ty
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F2(2R,) _ <z,) {21A _ 3!A <2Rl—2R)

Zy % M
+_1. 41A, <231 2R, 2_l 51A, <2Rl—2R2>3+._'}
21 3,8 3 31 3% P ’
F1<3>(2R2)__< >{31A 41 A, <2 —2R,
5 \3 30 N

31 3¢

A_ 2R1 2R§‘2 1 6 A 2R1—2R2 3
S5 5] +.0

+
Fl“’(ZR /z> { A, A3<2R1-—2R
; s

=15,

_1_61A6<2R1 2R2> 1714, <2R1 2R> }
21 3¢ S 31 37 S R

81. Transformation of the Formula for the Second Middle Wave—In what follows
we shall disregard coefficients A beyond A, ; if it were desired to include further co-
efficients A some of the formule would require modification, but there is no difficulty
arising from the convention to stop at A,. The most effective transformation of the
formula for Z in the second middle wave is found by putting for Z; the value derived
from the first reflected wave from the right, viz. :—

10 _ _ 2,
Ty = It Ty (Rumsy) + [<1 aa > { 00, | Gt (25—281) +a, (25—281) +}] ’
o/ (945a0 aT r=Ri, 8=

so that the terms contributed to Z by Z; come to

! 10
-2 ikl (Rl—i-sl)” +105 <§Z§OL +OLO> —105 (R1+81) a

+45 (Ri+8)2! a,—10 (Ry+5,)* 3! oy + (R +5,)* 4! a4]>

<1 8> {(s —s1)* (8+R1)4}

o oo o (R+s)°

and then, before putting R, for s;, or —A,, —A,, ..., for a, @, ..., transforming the
terms contributed by A,, A;, A,, A, to the form

(1 ai) [ {Ao+2A; (r—=R,) +2°A; (r—Ri)*+2°A; (T—Rl)“}]

1 AO{ <51+’1"> Si+7r 61+7"> <51+7">8}
- - 5
+< 80'> [0' o6 Ri+s 14 O<RI+SI) 12 O<R1+81 +3 Ri+s
2A, (R1+81){ 31+r> < sl+r> < si+7 >7 < 51+r>8}
_af\vurol) — — 15(-
(o 21 QRl-i-Sl +56 R1+81 50 R1+81 + R1+S1
2°A, (R1+81)2{_ < sl+7'> s\ < S+ )7_ S147r >8}
* o . 6 Ri+s +17<R1+81> 16 Ri+s: +5<R1+81

_23A3(R1+sl)3{_< S147 >5+3< S1+7 >6_3< sl+o~>7+ < sl+o~>8}]’
o Ri+s/ Ri+ Ri+s Ri+s
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The first line of this expression, with the terms contributed by A,, A;, ..., makes up

L2yee)

and the remaining lines are unaltered when —s is written for 7.
The terms contributed by K, and L, are the same as

A A

SOCIETY

OF

SOCIETY

OF

4 5 4 / 4 5 5
K, + Lor—3K, <l _8> {(s—sl) (Ri+s) }+1‘2“5‘L1 (_1_ i> {(s—sl) (Ri+s) ]f’
o 0o o \o 00, o
and thus the Z of the second middle wave is expressed entirely as the sum of the Z of
the first reflected wave from the left and a function of the form
b =)
o do o
Further, noting that with equal pistons /, = L;, we see. that ¢,(oc—u) contains no
terms of degree higher than the ninth in s or 4 (c—wu). Also we see that it can be
expressed as a rational integral function of (s—s,)/(R,+s$,) of the ninth degree, and that
it contains no terms of degree lower than the fourth. Since Z and 0Z/do are continuous
at s = s, with the Z and 9Z/do belonging to the first reflected wave from the left, the
function ¢, can contain no terms of the fourth or fifth degree in (s—s;)/(Ri+s;). The
vanishing of the coefficients of these terms does not introduce any new condition. On
replacing @,, ... by —A,, ..., we have the result that in the second middle wave
1 o\ o\* ,
Z = Ki+Lu+ <;_ -580—_> {F———l (o(;+u)}+22w C; E}:) {%_(%56—71757#71858—77959)},
where ¢ is written for (s—s1)/(Ri+s1), and 8, = Ry, = S, while #s, 1, s, 79 are given by
the equations '
. ' ‘ 9 /310
= = (Kily) 2Bl 4o <5’~°> +280& + 1408 + 628+ 238+ 66— G,
: 29 270 22
9 10
m = 4(K1"kl) (22_?;16)‘ - (%% <§;:) "2”4()?0—120?1—52@—18?3—454—5;7,
2R, v
=~} (Ki=h) (2230’ —5;(%) +T706+356+ 166+ 56+ Gi—Gs
9
ne = § (Kl—'kl) (QERIE) - §o,
2
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in which
A <g> A 2R z> 21 A, <le> <z>
b=35ml5,)» &=- 221 N (z b=257 %) 5
B 137A3<2R,> _241A4 2R,> <_2_1\1° _ ;5!A5 2Rl> <2 b
G=—1 » G=isr )50 b 215(21 2)
L ST - BN - I
6 2 7 - 515 213 2l \22/ ’ $ T 8ls 2]. 21 22

L[ (5
b= =2 5, <23<2 :

TaE SEcoND REFLECTED WAVES.

32. Relation between Pressure and Velocity at a Piston.—The relation between pressure
and velocity at the image of the shot is an equation connecting » and s, which holds at
z, = 0, and can be interpreted as the equation of a certain locus in the plane of r and s.
This equation can be written in the form

(7‘—R3)/22 = /15+B/2!§2+B/383+ ey

where § stands for (s—8,)/S,, and the coefficients B’ are at present undetermined.

To determine these coefficients we have recourse to the method of Articles 21-23.
During the progress of the second reflected wave from the left, the value of z, at any
point in the region occupied by it can be expressed in terms of the values +" and s of
r and s, which occur simultaneously at the point, by the formula

g = _5hj (Y/o) du

AC

wherein the integral is taken along the locus from the point A, where r =+, to the
point C, where s = s’. In this integral

'L&-“'Ug = 22{(B/1—1)3'+‘B,232+B,383+ ...},
du = 22 {(Bll—].) +2B/28+3B,382+ ...} d(?,
o =3 {1+ (B1+1) §+ B+ B8+ ...},

X=K—T’Jﬂf‘/)é{l+30(’”(”f"/)(8“"‘9+210( L Gl +}

"+)o (' +5) o’
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On putting R, for 7', we have the value of , along the junction of the second middle
wave and the second reflected wave from the left expanded in a series of powers of &,
or (s'—8,)/3,, in the form

@y = —5h[(Bh—1) &+ {By—(3B,—2) (B1—1)} &*
‘ +{B3—3B; (2B1—1)+(7B*—6B:+2) (B1—1)} &
+{B,—2B;(3B,—1)—8B,’—1B; (42B’—83B',+ 5)
—1(28B/*—21B*+ 9B, —2) (B, —1)} &"
+{Bs—1 B (30B1—7)—6B,B;+ B (210B'*— 108B, +7)
+1B? (105B,—27) —B: (560B'*— 462B'*+ 81B/,—7) ,
+1(126B*— 56 B2+ 21B2— 6B, +1) (B1—1)} 8"+ ...].
Now at any point (R,, &) on the same junction the value of x, can be obtained by
forming —II 0Z/oo, where

Z =K+ L+ <1 8?)') {BL?—@} + 3, <; a—%>4{(~1; (ne£6—n7f7+ns$8"n959)}

and '
II=a (0'/0'0)10, f = (8*82)/2R1,
and putting therein

/

o= R,+¢, u = Ry—¢, s=¢, s’—SQ: 3.,
and the result can be expressed in terms of ¢’ in the form
Lo __ 25\ T, (sz) _ / Fl (ZRz) /\2 1(2) 232)
L (C;-) [{945 D20 045 (1+4) g v az0 (144) __(_—228

4F1 (2R2) / 5F1(5) (2R2)
=i —(1+7) s }

s 11® (2R,) 2Rg)

b
"_?i /6 7\ V5 1482 &
+,,6(2R1) (9450945 x 3 (1+9) 87+ 420 x5 5 (1+8)

—105 (1L +&) +15(1+9)

—105x 15 (14+&)° & +15x —7'-(1 ) =48 (14+8) 8}
—nl 22) (94507—945 x§ (1+8) & +420x - (1487 8%

—105x 195 (1+8)°8"+15x 245 (L+ )87 —245 (1+8)° 8"}
+n8\zR > {94508 —945x 4 (1+8) 8" +420x 14 (1+8)* 8

—105x42(1+)8°+15x 105 (1+)* & —210 (1+8)° 8%}

__n9<2 > {9458°~945 x § (1+3’)8’8+420x18(1+3’)23’7

—105x63(1+&)°8°+15x 189(1 +8) 0P —245(1+0) 5’4}}

VOL. COXXII.—A. 2 G
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The terms independent of ¢ in the right-hand member of this equation add up to zero,
for x, vanishes at (R,, 8,); and, by equating the coefficients of powers of ¢’ in the two
expressions for x), equations are obtained from which the values of the coefficients B’
can be found successively.

33. Relation between Velocity and Time at a Piston.—The time at which any par-
ticular simultaneous values of  and s occur at z, = 0, can be found by the method of
Article 25, and thus the relation between velocity and time at the image of the shot
may be traced. We can write down the equation

Ty = —10% 20 [ (‘">_“{(Bq—1)+2B'2a+3B'332+ .. Jds
22 Sg 23

in which
§ = (s—84)/%s, o =3, {1+ (B1+1)3+B, +B " +...},
and thus ¢—T, can be expanded in powers of § in the form |

t—Ta = 018-*"02824-0383'{' ceey

where
o = — 19@<@>10(B’1—1),
a 2
10
o= 1OV 31, (1,4 (B ),
e lg_h<9~°> {By— 3 (8B, +1) Bh+22 (B1+1)*(Bh—1)},
2
Cy = ']%L<ﬁ) >10 {B/4_"Z' (2B/1+ 1) B’3_'1§1‘ /22+ 66B/l (Bll+ 1) Bl’
2
g (B 1) (B 1)),
0= — %@’)lo{m—% (5B1+3) B, —11B’2B'3+Jm (5B5+1) (B1+1) B,
2

+1482 (5B +3) By =72 (5B, —1) (B1+1)* B
+2962 (Bl +1)* (Bi—1)},

34. Dusplacement of a Piston.—To obtain the displacement of the image of the shot,
we have to find the value of # at , = 0 in terms of simultaneous values of 7 and s
occurring on the locus '

’7—‘R2-—-B ( ) ( ’2/22)(3 Sz) (B,3/222) (S—SZ)3+

Now, when z, = 0, we have x = wt—Z, and for the value of z at (R, 8,), denoted by
X,, we have X, = U,T,—Z,, so that when x, = 0, we have

'x'—Xz = ut—'UzTg— (Z'—Zz).
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Also we have '
(r, 5)
DTy = j 0Z 0+ %% 4,
. (R, Sa) au a

where the integral is taken along the locus, and, since 0Z/do vanishes along the locus,
we getb

(r,8)

¢ dt
(R, S2) Sz d .
w = U,+3,{(B1—1) §+ B+ B+ ... ],
t = T2+c18+c282+c3_33+

8 = S,+3.4.

T—Xy = ut-—UzT,,—j tdu-:j ——ds,

in which

It follovvs that, at z, = 0, 2 is given by the equation

x—X, = U2013 + {Uzcz + 72201 (B1=1)} &+ {Uses+§2ae; (B1—1) +5%0, B} &
+ {Uses+§3200s (B'1—1) + 320,83+ 42:0. B3} 8
-+ {UaCs + %2204 (B’1 —_ 1) + %2263]3’2 -+ %’2362:8,3 -+ -%EgclB',,} 85 + e,

which may be written
v xX— Xz 618+£28 +ff;83+

The formule which have been obtained avail to determine the displacement, velocity
and pressure at the shot or its image at any time during the progress of the second
reflected waves.

35. General Method for the Second Reﬂected Waves.—We shall need to be able to calcu-
late Z, ¢ and =, for any simultaneous values of r and s that can occur in the second
reflected wave from the left. It is best to obtain formulze for ¢ and z, separately, and
not to deduce them from the formula for Z by differentiation, because the formule
~will be approximate, and to obtain the terms of any particular order in ¢, for example,
by differentiation of Z it would be necessary to obtain the terms of order higher by one
in the formula for Z. The method of determining the formula for , has been indicated
already in Article 32, and the work will be completed presently. The formulee for ¢
and Z will be found by similar applications of the method of RmeMaNN. We begin with
the formula for¢. After finding formule for z,, ¢, Z, we can calculate x from the equation

sy 8]

36. Method of Determining t.—The value of 4 along the locus x, = 0 has been found
in Article 33. To obtain the differential coefficients of ¢ along the same locus we have
the equations ’

_aﬁ;i) ﬁ_ 8mo ot
8quH,a(r._ 0, 5o +IIa = 0,

26 2
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and
do
dwy 10h o, Loh o

S F e

where do[du is to be found from the equation of the locus. Thus we may write

do
@f — 1 ha-o du ﬁt — ho‘olo 1 .
de  adl do\? ou aot <d0'>2
1—(== 1—{ =

Now let (+/, s’) be any point P, and let lines PA, PC parallel to the axes of s and »
meet the locus in A, C, as in fig. 8 in Article 22. Then, since ¢ satisfies the same differen-
tial equation as Z, the integral

ot ov .V
[V(& s asre (s V)ar
taken round the contour formed by the arc AC and the lines CP, PA vanishes, and
therefore we have the equation
£, §) = [Vilat | @Y—:s V> tdrt <at 5 i) Vds,
Jac\Or 0 o

or, on putting

i =t-"T,,
the equation
o Y ’ ?Y__ V) / <at/ _t_/_>
¢ (v, ') =[Vt] +L <8? 5 td+a 50_V0l8.
But we hé.ve, along the locus,
ot ot ot o he 1 bhoy gl}_b
s 00 ou ac do T Tad™ ds’
du

and, by the theory of Article 25, the expression last written is the same as the value of
1dt/ds along the locus, or we have

!
g_z = 13,7 (e + 26,0+ 3cad+ ...).

Also along the locus we have

t = 10+ ¢+ 0% +
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ON LAGRANGES BALLISTIC PROBLEM. 211

Let s, denote the value of s at A. Then at A we have

/ 5
Y +s

r=1 s=s,, V=<, *}>,
" +8

V= edy+e0, 2 +e0,°+...,

where J, stands for (s,—S,)/=.,.
Along AC we have the formulee already written for ¢ and d¢'/ds, and we have further

rts 2140847080, ¢ = — =) (=)
V= <r,+ ) (1—20¢+9082—140834+70¢), ¢ = 715 (rrs)
ov. .V

oy (S'l‘"") (3"“3’) ("'+3)3 . 2 | 3
. 5— p CEw; (20—180¢+420¢2—280¢ ),

and we have to put
ds = 3,dd, dr=73,(B,+2B,8+3B,8+...)dJ.

The limits of integration are §, and &', which is (s'—8,)/S,.
The value of 8, is to be found by reversing the series

r—Ry = (s—8,) {B1+ (By/2,) (s—8,) + (By/%,°) .(3“'82)2 +. 1

and putting +’ for » and s, for s. 1If we write ¢ for (1" —R,) /2, the result is

s ¢ By n [2B} B, 5B,* 5B,B, B,
EE T U B T\ B TRy TR
B/ 4 Bl 2Bl BI 2 BlzBf BI
<14E‘,—§—21 B,S +3]§‘,;l7+6 B’17 B,b> L SR

Thus §, is known in terms of #.

37. Formula for the Time.—We work out the formula for # or t—T, in terms of 4,
or (s—8,)/2,, and ¢, or (r—R,)/S,, at any point answering to simultaneous values of
r and s which can occur in the second reflected wave from the left. For this we first
perform the integrations with respect to  and s and then suppress the accents on ¢
and ¢. We record the results as far as terms of the fourth order.

The terms of the first order present themselves in the form

L+et+dy 1
(T55) e (g e -0

and it is simpler to leave the factors

<1+e+3A>5 1
1+e+d/ (L+e+df
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as they are, rather than to expand them in'powers of ¢, 3, and 8. In like manner the
terms of the second order are

M _____];____ 1 5 Y] 2_ P
<1+e+3) “+(1+e+8)5{702+4cl(31+3)}(3 3%,

the terms of the third order are

5 '
(.l_l_%_fi%i> Cadn®+ m {es+ §es (B1+2) + 501 (Bi+1) (B +5) + Fei By} ($—6,%)

tre (3—8,) — —2—— e, B, (8+28,) (3—4, ),

-
(L+e+d)s (I+e+d)

and the terms of the fourth order are

14e+d,\° 1 .
<Tfe+_§> e, 0\ + (T op {36 +865 (8B 1+5) +§c, (B1+1) (B1+3) +§e.B,

+40 (Bh1+1)° (B1+7) +§e; (B1+3) B+ §e.By) (8—4,%)

1 {1,.902-4- g 01 (B,1+7)} € (8“’ 281&) (3'—81\)2

+(1+ +4)°

m—{ 5 C2B,1+ gClB, (5B’1+11)+2§’01B,2} (32+28A8+38 2) ((3‘ 5 )

38. Formula for Z.—We write Z' for Z—Z,, and seek first a formula for Z’' along the
locus z, = 0. The value of Z’ along this locus is given by the equation

(r,8) 8Z 8Z
/ = —
2 = L s d(f+ du

where the integral is taken along the locus 8Z/do = 0, so that

8 |
Z/_j fl?ds‘ Ezj(T2+013+0232+.--)(B'1—1+2B'23+3B'332+---)d&
0

Thus the value of Z’ along the locus can be expanded in powers of § in the form

N Z = dyd+d 0+ dyd+

d, = 3,T,(B,—1),

d, = 3, {T,B+4a (B1—1)},

dy = 3, {T,B;+%e:B,+ %¢, (B1—1)},

d, = 2, {T,B +%aBs+3e,By+4tc; (B1—1)},

dy = 3, {T,B;+%c: B+ 2c, B, + 3c,B,+ Ee, (B~ 1)},

where
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ON LAGRANGE'S BALLISTIC PROBLEM. 213

We require also the differential coefficient 0Z'/0s ‘along the locus, and this is given
by the equation

= = —(T2+018+0282+...). .

The value of Z’ at any point (+/, s') is then given by the equation

. (4
70, ) = [V, + L @7 5:) 7 dr (f’aﬁ + —>Vd

in which V has the same form as in Article 36, the value _bf 7 ab A is
1Sy + A2+ dad P+ ...,

and the integration is taken along the locus.
The result may be recorded in a similar form to that for ¢ in Article 37. The terms
of the first order in the formula for Z’ are

<1+e+8 iy = (1+ 5)52T(5 —4);

the terms of the second order are

<1 +€+3A 5

1+e+3> 20 = m{zz 2 161+ 5T, (B1+1)} —§di} (8 -4)),

the terms of the third order are

<11—:-€e-:-8§>5 dady’— (1 + +4) (33 {ea+ 501 (B'1+1)+ 10T, (B + 1)+5T,B’}
—§ {da+4dy (B1+1)}] (33 N

10 T (3=3,),

L 10 (3,Ts—dy) B (3+23,) (33, — m

J‘r(1,+e+8)6 3

and the terms of the fourth order are’

b
1 ’
<11—:_€€-:_8§> 0?4‘3‘;'-‘— m{, [422 {03+ 502 (B/1 + 1) =+ 1001 (B 1+ 1)3+ 50]B’
10Ty (Bt 1)+ 20Ty (B 1) Byt 51,85}
- ~;{ol,,+40’l, (B1+1)+6d: (B + 1)2+ 4d, B} (84 =6,%)

m[“‘ 93, oy + ATy (B 1)} + 30 (Bi—5)] e (8+20,) (33,

+ m [53; {e:B 1+ 41,8, (B1+1) + TuB} —§ {d.B1+ d, B (8B +9) +2d, B’} ]
€ ' :
X (62+ 20,0+ 33, ) (8—8,)%
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39. Formula for x,—A formula has been obtained in Article 32, and can be written
in the form

8§ / AN / /
(1, ) = =5 <’” 1) {1+3o(l:ﬂi§:i) ; ...}%(B’l—-l+2B’28+3B’38”+ ) ds,
A .

5, \ o (r'+8) o
in which we have to put
s =3 (1+d+),
o =3 {1+ (B1+1)d+ B +B:%+ ...},
=7 = 3 {Bd—d+ B+ B+ ...,
s—¢ = 3,(8=7).

After the integrations are performed the accents on ¢’ and ¢’ are to be suppressed. The
result may be recorded in the form :—The terms of the first order in the expression for
x, are

—5h (1 +6+3)5 (Bll—]-) (8—3A);
the terms of the second order are |
—5h (1+e+3)° {B3—38 (B +1) (B1—1)} (8°=3,%),

the terms of the third order are

—5h (L+e+8)’ {B3—2 (8B +1) By+7 (B1+1)* (B, —1)} ($=4,%)
—150% (1+e+8)* {3 (B1—1) e—B, (B1—1) (8+28,)} (8—384)7,

and the terms of the fourth order are

—5h (1+e+0) {Bi—3 (2B, +1) By—3B.2+21B) (B)+1) B,
, —14 (B +1)*(B1—1)} (*—d,%)
—25h (1+e+8)* [{2B,—7 (B 1+1) (B1—1)} ¢ (d+244)
—3{(8B,—1) B,—7B, (B +1) (B1—1)} (8*+28,0+38,%)] (—3,)%

40. State of the Gas at any Time.—With a view to applications it is important to
indicate how the state of the gas may be determined at any time, or when the shot and
its image have both travelled an assigned distance. We shall suppose that the time
in question is an instant during the generation of the second reflected waves, before the
second middle wave is obliterated. Then the central part of the tube is occupied by
the second middle wave, and beyond the junctions the rest of the tube, up to the shot
and its image, are occupied by the second reflected waves.

An assigned position of the shot and its image answer to a given value of z, and the
corresponding value of ¢ is to be found by solving the equation for  given in Article 34.
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This is the value of § at the image of the shot, and the corresponding values of 7 and s
at the image of the shot are given by formulee in the same article. Also, § being known
for the image of the shot in this position, the value of ¢ is given by the formula of Article
33. Let this particular value of ¢ be denoted by T,, and in like manner let the values
of the various quantities at the image of the shot at this time be denoted by attaching
a suffix 3 to the letters, thus :—R., ..

In the second reflected wave from the left the values of » that occur lie between R,
and R,. " To each such value, when ¢ = T,, there answers a value of s and therefore of
3. If in the formula of - Article 37 we put T, for ¢ and the chosen value for r, the formula
becomes an equation giving §. The chosen value of » determines the corresponding
values of ¢ and J,, and the deduced value of § determines the corresponding value of s.
Then, simultaneous values of r and s being known, all the quantities can be determined.
It seems to be most appropriate to assume a series of suitable values of » and calculate
the corresponding values of s. The process of finding J, by trial, may be simplified by
means of a theorem to the effect that the loci, in the plane of (r, s), which answer to
constant values of ¢ and =,, are equally inclined to the axis of . To prove this we

have
(d) e omfm_(dr)
CZO' t = const. o 80' au/ - au ao‘ - du xu=cousb.’
or
<dr——ds> _ <dr+ds>
dT+d3 t = const. dr—ds z9 = const.
or

ds ds)\
= —_ = 0.
<Cl7'>t = const, + <d7" Zo = const.

This theorem shows that a point of given 7 on the locus ¢ = T, is not far from the image
in r = R, of the tangent at (R,, S,) to the locus along which z, = 0. Hence a first
approximation to the s answering to a given r is 28,—s,, where s, depends upon r in
the known way, and therefore a first approximation to the required value of J is
28, — 4,

The junction of the second reflected wave from the left and the second middle wave
is characterized by the value R, of ». If, then, the process indicated above is carried
out for the value R, of 7, the result is to give a pair of simultaneous values of 7 and s,
which can occur in the second middle wave at the time when ¢ = T,.  Another pair of
simultaneous values can be found by finding the common value of 7 and s which occurs
at the central section at the same time. This is to be done by putting r» = s and ¢ = T,
in the formula giving ¢ in the second middle wave, and solving the resulting equation
for r by trial. When this is done we shall have two pairs of simultaneous values of r
and s which occur in the left-hand half of the central part of the tube at time T, and
they are the extreme values of » and s which can occur in that part at that time. To
obtain other pairs, we may choose an intermediate value of r, substitute in the equation
giving ¢ the value T, of ¢ and this value of 7, and find s by trial. For a first approximation

VOL, COXXIL—A. 2 H
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216  MESSRS. A. E. H. LOVE AND F. B. PIDDUCK

we may assume that the required point (r, s) is on the straight line joining the two
extreme points whose co-ordinates have been determined previously.

After these preliminaries the way is prepared for the numerical computation of any
special case.

PART II.

41. Numerical Constants.—Prof. Love’s investigation was undertaken in order to
throw light on a vexed question of internal ballistics, namely, how the mass of the
propellant should be taken into account in calculating the velocity and pressure in a
gun. Its completion has been delayed not only by the analytical complexity of the
problem, but also by the time required for the numerical computations. In his original
paper LAGRANGE set out from a certain state of the gas assumed as a first approximation,
namely, one in which the velocity, at a given epoch, changed uniformly from one end
of the gas to the other. Restricting attention to the case of a very heavy gun, the
total momentum of gas and projectile is then (M-++1C)V and the total kinetic energy
L (M-+30)V2, where V is the velocity of the projectile, M its mass, and C that of the
propelling charge. LAGRANGE recognized that this state of motion is dynamically
possible only in the limiting case of small charges, but made no real progress towards
the theory for finite charges, the development of analysis being then inadequate to the
problem. Since the ratio C/M in modern guns, though less than with gunpowder, is
still of the order £, the importance of a full numerical discussion of LAGrRANGE’S problem
is evident. The calculations which follow were begun by Prof. Love, who determined
all the fixed coefficients and the position and velocity of the projectile at various epochs.
After verifying these figures I undertook the calculation of the distribution of pressure
in the gas, at the times when a new type of wave was either being generated or extin-
guished, and at the half intervals. Instantaneous combusion is assumed, as it appears.
hopeless to attempt to allow for the gradual burning of the propellant which occurs
in actual guns. »

It is assumed that the propellant is cordite M.D., for which the maximum pressure
for different densities of the gas, after explosion in a closed vessel, has been measured
by Nosre.* The results at medium pressure are represented approximately by the

formula

po<l —1> — 9500,
Po

giving the pressure p, in kilograms per square centimetre when p, is in absolute measure.
This is the formula used in calculating initial pressures. The subsequent expansion of
the gas is adiabatic, and will be represented by an equation of the form

/1 \Y
P (; —1) = const.

/

* Sjr A. NosLg, ¢ Phil. Trans.,” A, vol. 205, p. 201, 1906.
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ON LAGRANGES BALLISTIC PROBLEM. 217

It appears probable, for various reasons, that the mean adiabatic index y is in the
neighbourhood of 1-2. As we are restricted to a special set of values the value
11/9 = 1-22 is selected.

The problem discussed in detail is that of a gun of 15 cm. calibre, mass of projectile
50 kg., charge of propellant 12 kg., distance travelled by the projectile from its initial
position of rest to the muzzle 6 metres, initial volume of gas behind the projectile
(chamber capacity) 30 litres. Tt is not, of course, possible with instantaneous combus-
tion to keep the maximum pressure the same as it would be in a gun, though the muzzle
velocity is much the same. The maximum pressure in this case is 6333 kg./cm.2.  Had
the pressure been kept down to 3000 kg./cm.? by taking a smaller charge, the problem
would have been less representative as regards muzzle velocity, and as regards the ratio
of the masses of propellant and projectile.

In order to exhibit both the pressure in the gun and the degree in which the back
particles partake of the motion of the projectile, eleven planes are taken at equal distances -
apart in the undisturbed gas, the end planes coinciding with the breech and the base
of the projectile respectively. The horizontal line at the top of Plate 1 shows their
initial positions. These eleven planes of particles are traced throughout their motion.
The particles originally half-way between the breech and the base of the projectile may
be called the middle particles,* and we shall choose, as epochs for the curves of pressure
(Plate 1), the times at which a ““ junction ” is either at the breech or the base of the
projectile, or has just reached the middle particles. A junction is marked with a black
circle on the figure.

42. Details of the Calculation (Plate 1, curve 1) (Article 10).—The early stages of
the calculation call for no comment. We have o, = 960,536-7 cm./sec., p, = 0-4,
Py = 9500p,/(1 —p,) = 63333 kg./em.’, ¢ = 339°5305 cm. (the initial distance from
the breech to the base of the projectile is 3¢ = 169°76525 cm.), @ = 177,877-1 cm. [sec.,
h = 778-0909 cm. The progressive wave which starts out from the base of the projec-
tile reaches the middle particles (z, = %c) at time ¢ = 0-0004772 sec. Particles between
there and the breech are still at rest : from these particles to the base of the projectile
the velocity of the gas increases almost uniformly to the value 99-6 m./sec., and the
pressure falls to 5651-3 kg./em.2. The fall of pressure is remarkable considering that
the projectile has only moved a distance of 2-4 cm. from its initial position ; and we
observe a finite discontinuity in the pressure gradient on the two sides of the junction.

(Plate 1, curve 2).—The progressive wave reaches the breech at time ¢ = 0-0009544
sec., when the projectile has moved a distance of 9-28 cm. from its seat and has a
velocity of 187-7 m.[sec. The pressure falls from 6333-3 kg./cm.” at the breech to
5097-2 kg./em.2 at the base of the projectile. ,

(Plate 1, curve 8) (Articles 12, 16-17).—The first middle wave begins at the epoch
just mentioned, by reflexion of the progressive wave at the breech. To find when it

* These particles must be distinguished from those of the *“ middle section ” of the theory, which here

correspond to the breech of the gun.
2 H 2
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reaches the middle particles, 7.e., when the progressive wave has receded to z, = ¢,
we solve the equation (z,+7)(wt+h) = (h+1c)?, giving ¢ = 0-0014785 sec. The
velocity of the projectile at this time is 275-4 m. /sec., its displacement 21-4 cm. The
pressure falls from 51516 kg./cm.? at the junction to 4598-7 kg. /cm.? behind the projec-
tile. In the first middle wave trial and error begins. At the breech v = 0 and ¢/
is found by trial to give the correct value of #. For intermediate points we have theoreti-
cally to find both » and & by trial to make z, and ¢ correct. Actually the smallness of
u allows us to neglect powers of u/s above the second, so that the pressure follows an
approximately parabolic law. The difference of pressure in the first middle wave is
quite small. At the breech we have 5170-9 kg./em.?, an increase of only 19-3 kg./cm.2
over that at the junction, as against a drop of 552-9 kg./cm.” from the junction to the
projectile.

(Plate 1, curve 4).—The first middle wave reaches the projectile at time
t = T; = 0-0021170 sec., when the displacement of the projectile is —X,; = 42191 cm.
and its velocity —U, = 87175-64 cm./sec. = 3718 m./sec. The semaining constants
at this epoch are R, = 443,092-1, 8, = 480,268-8, 5, = 923,360-9. The pressure falls
slightly from 4169-1 kg./cm.? at the breech to 4102-5 kg./cm.? at the base of the
projectile.

(Plate 1, curve 5) (Articles 18-25).—The first reflected wave begins at ¢ = T,. For
the constants we find

log (Ao/2,") = 699416,  log (A/5,") = 998722, log (—2! A,[3®) = 766552,
log (81 Ayf2,") = 520603, log (—4! A,/S)%) = 453510, log (5! As/S)7) = 335986,
log (61 Agf2,") = 269991, log (7! A;fS%) = 149726,  log (8! Ay/S,%) = 0702177,
log (91 Ay/3,) = 029583,

log By = 033341, log B, = 084347, log B; = 1'66011, log B, = 249429,

log B; = 833303, log By = 4°18096.

K, = —670'58,  log(—L,) = 3'64091.

To find when the first reflected wave reaches the middle particles, we know that
r = R, along a junction with the first middle wave, and s is found by trial, from the
formulze of the first middle wave, to give ©, = f¢. Knowing 7 and s, ¢ is known : we
find £ = 0-002898 sec. The part of the first middle wave which still remains is treated
as before. The pressure falls from 3316-0 kg./cm.2 at the breech to 3304-3 kg./cm.?
at the junction. A long process is required to find the pressure in the first reflected
wave. Writing ¢ = (r—R,)/2, and § = (s—8,)/%,, at the base of the projectile
¢ = Bid+By*+...+Bd" is a known function of §. We expand the formule of
Article 20 to give t+hja, x, and (Z—K;—Lyu)/3, explicitly in terms of ¢ and d, and
try different values of § until ¢ has its required value 0-002898. Then the pressure at
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the base of the projectile is known, and also its velocity and final position. For other
points ¢ and § have to be found to make both x, and ¢ correct : the adjustment is facili-
tated by the fact that uniform division of z, corresponds approximately to uniform
division of ¢. At the junction (z, = 1¢) 4 = 0, and at the base of the projectile (z, = 0)
¢ = —0-019578. Taking four values of ¢ equally spaced between these, and finding
§ to give the correct ¢, we have four points which correspond nearly to 10, 20, 30 and
40 per cent. division of the initial gas, and are easily adjusted to exact value by inter-
polation. The pressure falls from 3304-3 kg./cm.” at the junction to 2970-3 kg./cm.2
at the base of the projectile. The projectile is displaced 75-4 cm. from its seat, and
has velocity 466-2 m. [sec.

(Plate 1, curve 6).—The first reflected wave reaches the breech at time ¢ = 0-003859
sec., where the pressure is 2610-5 kg./cm.? Other points are found as in the last para-
graph. The pressure at the base of the projectile is 2161 -6 kg./cm.2, the displacement
of the projectile 124-3 cm., and its velocity 550-4 m. /sec.

(Plate 1, curve 7) (Articles 30-31).—The second middle wave begins at the above
epoch ¢ = 0-003859, pushing back the first reflected wave along a junction s = R,.
This junction reaches the middle particles at time ¢ = 0-005154. In the part of the
first reflected wave that still remains the pressure falls from 1708-2 kg./em.* at the
junction to 1535-2 kg./cm.2 behind the projectile. The displacement of the projectile
is 202-1 cm. and its velocity 632-5 m./sec. The second middle wave differs from the
first reflected wave by the presence of four additional terms with coefficients given by

log {—7 (Z,/2R.)"} = 8'04397, log {m (S./2R:)"} = 3°52835,
log {—us (So/2R0)} = 860452, log {ne (3,/2R0)°} = 334841,

where =, = 814,358-3 cm./sec.; also k; — 466-85. At the breech w = 0 or
¢p—38 = (8,—R,)/2,, leaving ¢ to be found by trial. The pressure at the breech is
17280 kg./em.2, For intermediate points we take a number of values of ¢, find § by
trial to give the correct ¢, then calculate x, and interpolate.

(Plate 1, curve 8).—The second middle wave reaches the base of the projectile where
s =28,=R,,r =R, =371,266-2, giving ¢ = 3,, { = T, = 0007137 sec. This point
is found without trial. The pressure at the base of the projectile is 1030-2 kg./cm.2,
its displacement —X, = 335-6 cm., and its velocity —U,= 71,827 cm./sec. =
718-3 m./sec. The value of Zis Z, = —177-0. At the breech we have a pressure of
10857 kg./em.2, Other points are calculated as in the last paragraph. We have

m @
F12§21?)R‘2) =.0"00034563, B%._Q?WRQ = 00000015953, E_l_é%_R?) = —0'000020614,
2 ‘ 2 2

(3) 4) : (5) .
F.2 (2Ra) _ 00017489, ELS("%B“) = 00005648, (2R _ 5004338
2 -2
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(Plate 1, curve 9) (Articles 32-40).—The second reflected wave begins at the base
of the projectile at time T, and pushes back the second middle wave along a junction
r = R,. Thus ¢ is known, and the value of § corresponding to an assigned z, is found
by trial. We find that the junction reaches the middle particles at time ¢ = 0-01023
sec. The pressure at the breech is 650-0kg./cm.2, at the junction 641-0 kg./em.2. TFor
the constants of the second reflected wave we have

log By = 0'18668, log B/, = 027890,  log B, = 0'82262, log B, = 1'40104,

log B’y = 199012, log (—c) = 1'08789, logec, = 010720, log(~c;) = 1°00167,

log e, = 1'81519, log (—c;) = 256985, log & = 394418, log(—¢&) = 507447,
)

log & = 601858, log (—¢&) = 6'85566, log & = 7°62931.

The method of calculation of the pressures in the second reflected wave has been described
in Article 40. The pressure at the base of the projectile is 5816 kg./em.2, where the
displacement is 5719 cm. and the velocity 801 -8 m./sec.

The projectile is so near the muzzle at time ¢ = 0-01023 that a fresh chart for the
muzzle epoch (displacement 600 cm.) is unnecessary. We find for the time to the
muzzle ¢ = 0-01058 sec., for the muzzle velocity 807-7 m./[sec., and for the pressure
at the base of the projectile at this instant 552-6 kg. /cm.2,

43. Results.—The pressure results are collected in Table I., from which Plate 1 is
constructed. Plate 2 shows the pressures at the breech and at the base of the projec-
tile, their ratio, the mean pressure, the displacement and velocity of the projectile, and
a certain ‘“ energy factor ” as functions of the time. The mean pressure (P in Table 1.)
is that which the cordite gases would have after adiabatic expansion, at uniform density,
to the volume which they actually occupy at time ¢. The work of expansion in these
circumstances will be equal, not to the kinetic energy of the projectile, but to a greater
kinetic energy corresponding to a fictitious mass M+«C, where '

1 _ 1 P 2In
(ML) V= 29—0]00<;0—1> [1 - (50) ]

The “ energy factor ” o may be expected to vary with the distance travelled by the
projectile : the lower values given are only approximate.

It 1s difficult, after a glance at Plate 2, to resist the conclusion that the motion is
tending to a limiting form, in which the pressure is approximately represented by
J (@) ¢ (¢), with suitable functions f, . The energy factor « oscillates about a mean
value of approximately 1/3, and the range of oscillation diminishes in time: similarly
the pressure ratio oscillates about a value of approximately 0-9. Moreover, the latter
value, like the former, can be obtained from LAGrRANGE’S approximation by suitable
treatment.® If p’is the pressure at the breech and p that at the base of the projectile,

* F. Gossor and R. LiouviLLg, ‘ Mémorial des Poudres et Salpétres,” vol. 13, p. 51, 1905.
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p'[p is the ratio of the momenta of gun and projectile, that is (M-++1C)/M, so that the
pressure ratio is appfoximately I_Jr—(%m = 0-893. The agreement is to be expected ;
for Table I. shows how little, relatively, y/y, varies with y,, so that LacraNc®’s approxi-
mation leads to little error in the total energy and momentum.

44. Calculation of Recoil.—Prof. Love’s theory also enables us to calculate the distance
recoiled by a very heavy gun while the projectile is travelling to the muzzle : this is

important since the distance can also be found experimentally. We take from Plate 2

the values of p” and p at intervals of 0-0005 sec. to the muzzle, and calculate j p'dt

and j pdt by approximate integration. These quantities are proportional to M'V’

and MV, where M/, M are the masses of gun and projectile and V’, V their velocities.
A second integration gives M'S" and MS, where 8’ and S are the distances travelled by
gun and projectile. For the muzzle epoch we find, in the present problem, M'S'/MS =
1/0-879. The recoil distance &’ of the gun is therefore the same as for a massless pro-
pellant and a projectile of mass M/0-879 = 56-9 kg., an addition of 0-57 times the
mass of the propellant to that of the projectile. LaGRANGE’S approximation gives
0-5. Cranz* measured the recoil distance of a rifle, with comparatively slow combustion
of the propellant, and obtained factors 0-496, 0-497, 0477, mean 0-493. The theory
of limiting motion would seem to apply with almost equal force to the case of slow
combustion ; and thus we may regard CrAaNz’s experiment as confirming the recoil
factor 4 and therefore (indirectly) the energy factor 1/3. Prof. Love has worked out
the energy factor for a light projectile of mass 25 kg., and 12 kg. propellant, at epochs
corresponding to (4) and (8) in Table I. The values are 0-335 and 0-333.

45. A Special Solution of the Hydrodynamical Equations.—Prof. Love’s theory having
suggested the possibility of the motion tending to a limiting form, it remains to show
that the hydrodynamical equations admit of a particular solution in which the pressure
is of the form f(y,) ¢ (£). We shall see that the pressure ratio and energy factor corre-
sponding to this exact solution agree closely with those already calculated, and thus
support is lent to the view that the limiting motion would be developed sooner or later
with other initial conditions, e.g., with gradual introduction of gas from a burning
propellant. If y, is, as above, the initial distance of a particle from the breech and y
its distance at time ¢, the general hydrodynamical equation is

2 /1 v 1 a —y—1 1 2
Sl =p(t-1) (L)L Ty
ot £o Lo a,’ljo Po OYo
Write temporarily @ = y,, 2 = y—py,. Then
\ —y—1

2 _ oy 0% (02
2F =y (L) s (i)

* C. Cranz, © Zeitschr. f. d. ges. Schiess-u. Sprengstoffwesen,” vol. 2, p. 345, 1907.
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A solution of the type z = f(z) ¢ (¢) is possible if and only if
S () = Af (@) {f (@) {p ()7 9" (1) = B,

where A and B are constants connected by the equation
B=Y2(1_p)A.
Po

If S is the area of the cross-section, the equation of motion of the projectile, which is
supposed to be at z = b, is pS = Mf(b) ¢" (t). Now in general

P =po(L—po)” {f () ¢ (£)} .

Hence the equation of motion of the projectile is satisfied if

MBF(B) = Spy (L—p)" 17" ()},

or

A

R AORVAOES

where ¢ = C/M = Sbp,/M is the ratio of the mass of the propellant to that of the projec-
tile. Writing w = f (#) and ¢ = dw/dw, the first integral of the differential equation

for w 18
qv_l = 2 1 52
A. ('y-—l) C&z—w‘

where o is a constant. Since f(z) vanishes with z, the final integral is

1
Y 2 '—‘11 _ 2 y-1
JO (=’ p1dw = { A—————(y_l)} x.

Writing ¢ = f (b) for the length of the column of gas at the instant considered, we have
therefore

([ (=T duo = {HL}_Z) o= g

y—1)

2 1 )
y—1)a’—c

Substituting for A we have

/ _(y=D(a’=c")e 2 — {(‘)"‘1) 6}7*1 2__ 3y
f (b) - zybc ’ -A-(‘y—l) = Zybc (@ c ) ’
so that '
[[ (@ o = (y=L)e e g7,
o 2vye
This equation determines c¢/a, and when it is known w is given by -
fu (wz—wz)ﬁ Clw = .(l:l)_f (a2_02)y—z—1 :_'v_.
0 2yc b

VOL. COXXII.—A. ’ 21
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The pressure ratio between the two ends of the gas is R = {f7(0)[f"()}", where
{7 (0)}7™ = a®f/(a®—c*). Hence

2 2
" —c\v1
R=< =31

(07

Writing ¢ = @ sin  we find R = cos™ 8, where m = 2y/(y—1) and 6 is found by trial
from the equation
sin 6 j ¢

- €
— | cos” 7 0dO = —.
cos m

0
In the case of y = 11/9, m = 11, we find, after some analytical reduction, the
expansion
R = I—der g d— 130 o,

valid for small values of e. Either method gives R = 0-894 for ¢ = 12/50, the corre-
sponding value of ¢ being 8° 9’ 6”. It will be noticed that although R is not equal to
(1+4¢)7" to the second order, the approximation is still a remarkably good one. The
present theory will appear more satisfactory, as it is based on an exact solution valid
for all values of e.

As regards the energy factor, the previous definition in terms of the work done from
an initial state of uniform density is not convenient, as this state is not one of the previous
states of the gas. We may, however, define the energy factor in such a way that the
kinetic energy of the gas is ae times that of the projectile.*

Corresponding to the initial distance « from the breech we have in general w = « sin ¢,
where

¢ - @
j cos” gpdp = K-,
0

and

) m
_ e cos™0
K =J cos™ 1 0do = .
0 m sin 0

The corresponding velocity is V sin ¢fsin 6. If x+dx corresponds to ¢-+d¢,
Kdx/b = cos™* ¢dp. The kinetic energy of the gas is

cv? J

2K sin%

0
cos™ ! ¢ sin® ¢,

0

and that of the projectile ¥MV?® Hence by definition

m ’ 1 in? od
= ————— | cos™ ' ¢ sIn
e cos™ §s1n 0 jo s PP
* This was not done above because the problem would naturally present itself in the other form in
practical calculations, where we should seek a factor which will make the kinetic energy of the projectile
equal to the work of an assumed massless propellant.
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where 6 is given by the equation already written down. Using the reduction
formulee we find
_ e—msin’ 0
" (m+1) esin®’
giving o = 0'325 when m = 11 and ¢ = 12/50. The expansion formula, to the first
power In e, is
=%—1bs e
46. Application to Ballistics.—To resume, Prof. Love’s theory supports the factors
4 and § up to considerable values of C/M, and shows further that the ratio of the pressures
on projectile and breech (Plate 2) begins at once to oscillate about its mean value,
reaching its first minimum when the projectile has travelled a distance of only two-thirds
of a calibre. We may remark that no support is lent to the theory which appears to be
favoured by CrARBONNIER* of more or less violent impulses of pressure on the base
of the projectile : the discontinuity is at most one of pressure gradient, which becomes
less and less as the motion proceeds. What would happen with gradual introduction
of gas from a burning propellant is more conjectural, but nevertheless it seems of interest
to examine the consequences of the assumption that the limiting state of motion, contem-
plated above, is developed almost at once, and maintained ever after. The considerations
which we shall advance have no pretence to rigour.f
It is usual to measure maximum pressures in guns by crusher gauges placed at or near
the breech. Let P be the pressure at the breech, P(1—C/2M) that at the base of the
projectile at any time, powers of C/M above the first being neglected. Compare the
actual motion with that for a massless gas of the same thermodynamical properties,
and a projectile of mass m. Then for identical motion of the two projectiles, with
m/M = 1+C/3M,
Y —
P(1-C/2M) M’
or p/P =1—C/6M. In order to keep up the parallelism of motion we have to ensure
that equal quantities of propellant are burnt in equal times. The rate of regression of
the surface of colloidal propellants at different pressures has been measured by VIEILLE
in a famous research. ManssLL, who examined cordite M.D. by ViriLLe’s method,§
found a rate of regression in a closed vessel approximately proportional to the pressure.
If D and d are the diameters of cordite in the two cases (or more generally numbers
proportional to the linear dimensions of the graln) equal generation of gas corresponds
approximately to the condition

d _ p
DT P(-C/aM)’

* P, CHARBONNIER,  Traité de Balistique Intérieure,” Paris, O. Doin, p. 91.

+ See also F. Gossor and R. LiouviLLe, loc. cit., pp. 50-58 ; vol. 17, pp. 61-66, 1914.
1 P. VieiLLg,  Mémorial des Poudres et Salpétres,” vol. 6, p. 256, 1893.

§ J. H. MansgLL, ‘ Phil. Trans.,” A, vol. 207, p. 243, 1908.
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since P(1—C/4M) is the mean pressure in the first gun. Hence we find that the relation
of the ballistic constants in the two guns is '

w C d C P C

*W—=1+m, ﬁ=1+m, §=1+6—’M
The first two equations give the projectile and the size of cordite to be used in the ideal
calculation, the third equation the ratio in which the calculated maximum pressure is
to be increased. The theory would be seriously invalidated if the ratio of the pressures
recorded by crusher gauges in the breech and in the base of the projectile is not approxi-
mately 1+C/2M, and does not apply to extraordinary experiments with very quick
combustion (for which the pressure ratio is, of course, nearly 1).

From a few calculations I have made with full charges in guns, it appears that the
empirical rule of adding one-half of the mass of the propellant to the mass of the projec-
tile, without other change of ballistic constant, gives approximately correct pressures,
while muzzle velocities are about 14 per cent. low. The fraction one-third gives approxi-
mately correct muzzle velocities, but maximum pressures about 4 per cent. low.

An important factor in the future progress of internal ballistics would seem to be
the determination of the rate of regression of colloidal propellants as a function of both
temperature and pressure. Hitherto only the latter has been taken into account,
although some experiments of WoLrr* show a falling off of the rate for small charges
in a very small closed vessel, which appears to be due to loss of temperature. The effect
would be enhanced in a gun, where the whole mass of gas is cooled by expansion, instead
of being cooled relatively strongly near the surface. One consequence of diminished
burning would be the occurrence of unconsumed cordite at velocities higher than those
which SEBERT and Huconior’s formula would give with a burning constant derived
from experiments in closed vessels.

* W. Worrr, ‘ Kriegstechnische Zeitschr.,” vol. 6, p. 1, 1903,
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